
Top 10 Challenges When Building
a Feature Flagging Solution
From the Ground Up

There’s no doubt that feature flags grow in importance

once engineering and product teams begin to recognize

the benefits. By separating code deployment from

feature release, feature flagging is transformed from a

niche project to business critical functionality.

FEATURE

RELEASE

CODE

DEPLOYMENT

Kicking off an internally developed feature flagging system is standard

practice for many companies today as feature flags help engineering teams release faster at lower

risk. A simple on/off switch probably works fine with a small number of developers and proves

out the concept of feature flagging without much difficulty.

Use cases for
feature flags

The challenges of developing an in-house feature flagging

system grow almost as fast as, if not faster than, the list

of requirements. Can an in-house solution really scale to

meet the needs of the business?

Here are the top 10 challenges we see

customers run up against when developing
an in-house feature flagging system...

• Continuous Integration

• Phased rollouts to support

Continuous Delivery
• Kill switch

• Test in Production

• Beta programs

• Paywalls
• A/B/n testing

Manual config changes
In-house feature flag solutions typically leverage

a file or database for turning features on or off, so

an engineer must make a config change for every

feature release. When the flagging implementa-

tion is database-backed, and a feature is ready for

rollout, a column is added to the database with

a Boolean on/off indication. Any code change

is inherently risky and comes with the potential

for error.

Also, config changes often go through the same

deploy process as standard code which may take

hours or even days to push out code. That means

any config change to flags will take just as long.

Finally, manual config changes mean product

managers are unable to make their own changes

and are therefore dependent on engineers for

every single change.

CHALLENGE

#1:

CHALLENGE

#2:

Manual compilation
of target segments

With this basic implementation, the feature

will be either on or off for all customers. When

conducting a controlled rollout, compiling the

list of customer IDs for each feature exposure

will be a manual process, which requires an

engineer to go to an admin page and turn the

feature on for each user.

Expanding the customer segment for a phased

rollout will require another manual compila-

tion of customer IDs, and so on until 100% of

the customer base is reached. Keeping track of

the treatment served to each user can quickly

get out of hand. Also, a customer base is not

going to be static, and names will be continually

added and removed over time. Tracking who is

entering and who is leaving the customer base

will also require manual tracking. Somehow.

Access to which customer has which feature turned on or off

becomes a real issue. At best the data is stored in a plain text file

with UUIDs, but these aren’t readable by product management or

the customer support team. Worse, the data may be hard-coded as

environment variables that are impossible to access. Not knowing

what experience a customer has received makes customer support

more troublesome. Anything that causes a problem for customers

or increases support calls should be immediately turned off, but this

will take precious time without rapid access to the user’s treatment.

Problematic
customer support

CHALLENGE

#3:

Many of the companies we’ve worked with often come to

us with disjointed solutions across their dev teams with no

centralized source of truth of “what is flagged”. Imagine each

microservices dev team creating their own unique feature

flagging system. As a result, monitoring and clean up of

old feature flags becomes increasingly difficult as teams

Technical debt

CHALLENGE

#4:

generate more and more flags. Old flags can reduce code

readability or worse, result in accidental misconfigura-

tion. Even with a sourced feature flagging system in place,

technical debt can be an issue (we recommend several

best practices for managing feature flag debt).

https://www.split.io/blog/managing-feature-flag-debt-split/

Identifying the owner to a specific feature flag

and documenting information such as what the

flag does and why it was created can be difficult

if an in-house solution doesn’t track this data.

Employee turnover or simply time passing can

result in teams having to re-establish the original

purpose of the flag to determine if it’s still needed

or risk keeping it in the code and forgetting it

altogether.

Lack of
documentation

CHALLENGE

#5:

Incomplete open source options

What dev teams soon discover is that

open source tools are designed for just

one part of the development stack, and

no single library can provide all the

desired capabilities. Maybe there’s one

for JavaScript, but it doesn’t provide

an audit trail. Maybe there’s one for

.NET, but it doesn’t offer a UI for viewing

metrics. To support the full application

stack, access to complete functionality

and breadth of languages will require

multiple tools. Toolset fragmentation is

not a desirable path.

CHALLENGE

#6:

The lack of a UI ties the product manager to

an engineer for every unique feature request.

Product managers will need to work directly

with a developer on every feature rollout,

which causes significant coordination

overhead. Also, product managers have

limited visibility into what treatments are

served and to whom. Keeping track of which

treatment a customer receives is critical during

a rollout, especially for those customers who

may be considered high risk or high touch.

Lack of a UICHALLENGE

#7:
Everyone on the delivery team needs access

to metrics when measuring the impact of

the release: “Should we keep releasing or

stop because there is a problem?” “Are users

responding well to the new functionality?”

To make informed decisions, all stakeholders

need a centralized dashboard to viewthe

feature-level impact on application perfor-

mance and business metrics.

An in-house feature flagging system is not the expertise of the com-

pany, and the project can be easily reprioritized to jobs that more

clearly reflect business critical requirements. Or that one engineer

who spent time on the project leaves or is re-assigned. Typically with

little to no documentation (see Challenge #5), there isn’t the institu-

tional knowledge needed to keep the project going.

Projects get
orphaned

CHALLENGE

#8:

Without careful design of the framework, an in-house feature flagging system

may cause a reduction in application performance. If there is a remote API call

for every flag computation or decision this could have a significant impact on

application performance as the number of feature flags and treatments grows.

Application performance
takes a hit

CHALLENGE

#9:

What was initially a simple on/off switch has grown into a significant application.

This can become a burden on the organization’s internal resources, which now has

to monitor and maintain the app over time. For organizations to manage the feature

flagging solution, there should be change and access control so dev teams don’t

have to worry about someone making a change they shouldn’t. You’ll also need

audit logging and SAML sign-on.

No access controls
or audit history

CHALLENGE

#10:

Exit, stage left! Enter Split.

Split provides a sophisticated feature flagging system, with a robust architecture and

rich feature set that empowers engineers and product managers to release faster at

lower risk.

Best of all Split is available now and is in use at companies from a range of industries

including healthcare, financial services, retail, travel, and many more.

Request a tailored demo to see how Split can help you
implement feature flags to release faster, lower risk,
and make smarter product decisions.

Visit www.split.io

CHALLENGE

http://split.io/request-demo/
http://www.split.io

