
The Definitive Guide to
Evaluating Experimentation
Platforms for Product
and Engineering Teams
Key considerations and best practices to help technical
teams get from evaluation to proof of concept

CITO RESEARCH

https://www.split.io/

CITO RESEARCH

CONTENTS

Evaluating Experimentation Platforms 3

Determining Your Evaluation Criteria

and Comparing Options 4

Comparing Options for Experimentation 5

Platform Selection Matrix 7

CITO Research Recommendations

for Selecting an Experimentation Platform 12

Setting Up a Successful PoC 14

High-level PoC test plan 14

Product evaluation elements 15

Estimating Total Cost of Ownership 18

Engineering costs 18

Speed to deployment 18

Costs to scale 18

Total value of platform 19

Moving Forward with Adoption 19

Appendix: Engineering Cost Estimator Worksheet 21

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 3

At top Internet firms,
experimentation

guides data-driven

product evolution.

It provides objective

data to aid in

prioritizing product

development

efforts.

EVALUATING
EXPERIMENTATION PLATFORMS
At top Internet firms, experimentation guides data-driven product evolution.
It provides objective data to aid in prioritizing product development efforts.

Leading Internet companies have invested literally hundreds of millions

of dollars in time and infrastructure to create the ideal experimentation

platform for their business. Key team members from such organizations

describe their architecture for experimentation, often presenting at
conferences and writing blog posts.1 A recent IEEE journal article based

on in-depth interviews with data scientists, engineers, and program
managers across Microsoft presents an experiment evolution model

that can be used by companies to gauge their maturity in conducting

experiments to drive product direction. In that article, the authors
quantify the value of experimentation: “The impact of scaling out the

experimentation platform across Microsoft is in hundreds of millions of

dollars of additional revenue annually.”2

Today, much of the infrastructure needed for experimentation has been
productized via commercial platforms and as well as made available via

various open source components.

The question then becomes how to select the experimentation platform

that is right for your business.

This evaluation guide explores approaches to building or buying an

experimentation platform, offering guidance for those seeking to find the
right way to adopt experimentation as part of their product development

process. It then describes how to use a proof of concept to vet the

chosen approach to experimentation.

1. A few recent examples include Uber, Netflix, and Airbnb.

2. Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch, “The Evolution
of Continuous Experimentation in Software Product Development: From Data to a Data-
driven Organization at Scale,” Proceedings of the 39th International Conference on Software
Engineering, 2017, https://dl.acm.org/citation.cfm?id=309746

http://exp-platform.com/Documents/2017-05%20ICSE2017_EvolutionOfExP.pdf
https://eng.uber.com/experimentation-platform/
https://www.youtube.com/watch?v=im-TIAtDt5w&t=2s
https://medium.com/airbnb-engineering/https-medium-com-jonathan-parks-scaling-erf-23fd17c91166

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 4

DETERMINING YOUR EVALUATION CRITERIA AND
COMPARING OPTIONS
The first step in evaluating an experimentation platform is to determine your buying criteria.

Criteria Considerations

Scope of experiments

On what parts of a product can experiments be run?

• Front end (UI/design level)

• Backend (feature level)

Teams supported

Which teams can participate in creating, running, and analyzing results from experiments?

• Engineers

• Architects

• Data Scientists

• Product Managers

• Marketers

UI/UX Does the platform have a UI? Who is it designed for?

Targeting capabilities

How do you want to target users:

• Based on percentages, randomizing who sees a feature?

• Based on multiple criteria, such as which products a customer purchased, their location,
their logon time?

• By creating reusable cohorts of specific users?

Analytics capabilities
and metric
integration

• Does the platform have native analytics capabilities or do you need data scientists to
gather and analyze data using external analytics tools?

• Is data joined up with events so you can analyze which users saw which features?

• Does the platform give you statistical analysis around what caused a change in metrics?

• Can business metrics be defined across experiments or must they be defined per
experiment?

Rolling back
experiments if
needed

• Can you define a point to roll back to if a new feature has issues?

• Who can roll back to that point? (Engineering only? Or other users)

Technical specs and
operational impact

• Which programming languages are supported?

• What integrations are available?

• How much engineering work is required to set up the product? Maintain SDKs?

• What is the performance impact of using the platform?

Technical debt
management • Does the platform help you track and clean up code that is no longer needed?

Security, privacy,
governance,
management

• Does the platform require sharing of user details or is user information kept private?

• Does it offer centralized management/governance features (permissioning, management
console, management across development environments)?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 5

Experimentation

can be performed

on the front end

(browser level) using
A/B testing as well
as at the feature

level, by turning
features on and off
in backend code and
rolling out features

to select groups of

users.

Comparing Options for Experimentation
Experimentation can be performed on the front end (browser level) using
A/B testing as well as at the feature level, by turning features on and off
in backend code and rolling out features to select groups of users. This
section overviews options for experimentation along with characteristics

to evaluate.

Open Source

Organizations that want to get started with experimentation often look
at building their own capabilities using open source components. Build-
versus-buy is an important consideration for many organizations.

Key characteristics to evaluate:

• To date, more open source projects are available for feature flags than
for A/B testing.

• By nature, open source does not require upfront license costs. It does
require engineering resources.

• Open source tools are language specific, so experiments cannot be
managed across microservices implemented in different languages.

• The lack of a UI limits experimentation to engineering resources.

• Analytics of experiments must be performed using separate tools.

Feature Management Platforms

Feature management platforms enable you to perform experiments by
turning features on and off via a UI.

Key characteristics to evaluate:

• Platforms often lack integrated analytics, so analyzing experiment data
requires separate tools and data science resources.

• UI is typically designed for engineering, potentially limiting
participation from groups like product managers.

• Often has strong targeting capabilities and multiple tool integrations.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 6

Full-stack
experimentation

platforms support

conducting

experiments on

backend code as
well as on front end

code.

A/B Testing Products

Testing variations in user interface and user experience at the browser

or app level is the purpose of A/B testing products. This type of
experimentation predates widespread use of feature flags, and as a
result some organizations call all of their experimentation A/B testing.

Key characteristics to evaluate:

• Support for dynamic JavaScript or CSS injection.

• UI that enables web marketing managers to set up and analyze
WYSIWYG codeless experiments.

• Alignment of platform with your overall experimentation goals.

Do you want to conduct code-based experiments as well as UI/UX

experiments?

Full-Stack Experimentation Platforms

Full-stack experimentation platforms support conducting experiments on
backend code as well as on front end code. As such, they are designed
to become a key element of the agile software development and delivery
process, enabling data-driven product development.

Key characteristics to evaluate:

• How well do targeting and analytics capabilities match your

requirements?

• Ease of use for product development teams

• Support for experiments throughout their lifecycle and across the

development landscape

• Whether targeting requires pushing user data into the platform (which
may raise privacy issues).

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 7

Platform Selection Matrix

Open Source*

Feature

Management A/B Testing

Full-Stack

Experimentation

Scope of experiments:
Front end or backend?

Front end: Support for UI-level
A/B testing ✓ ✓ ✓

Backend: Support for feature
flagging and code-based tests ✓ ✓ ✓

Teams designed for

Engineering, software architects ✓ ✓ ✓

Marketing, product management,
UI/UX teams ✓ ✓

Data scientists ✓

UI/UX and planning for scale

Includes a UI ✓ ✓ ✓

Support for tagging features ✓ ✓

Support for starring features ✓

Support for projects ✓ ✓ ✓

* Open source projects vary as to their capabilities. Values here apply to most open source projects in this category.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 8

Open Source*

Feature

Management A/B Testing

Full-Stack

Experimentation

Targeting capabilities

Randomization of experiments
(rollout to a percentage of users) ✓ ✓ ✓ ✓

Create reusable cohorts of
specific users ✓ ✓

Types of targeting criteria available:

Exact string match ✓ ✓ ✓ ✓

Strings ✓ ✓ ✓

Numeric ✓ ✓ ✓

Date and time ✓ ✓

Boolean ✓ ✓ ✓

Regular expression ✓ ✓

Sets of values
(customer bought these SKUs) ✓

* Open source projects vary as to their capabilities. Values here apply to most open source projects in this category.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 9

Open Source*

Feature

Management A/B Testing

Full-Stack

Experimentation

Analytics capabilities and
metric integration

Analytics to support data-driven
decisions based on feature uptake ✓ ✓

Includes native analytics capabilities ✓ ✓

Visibility into which users see which
experiments ✓

Statistical analysis to surface cause
for changes in metrics ✓ ✓

Ability to define business metrics
across experiments (such as
conversion rate, page load times, etc.)

✓

Ability to join event data
automatically to experiments to
support business metrics collection

✓

Rolling back experiments
if needed

Ability to define a roll back point for
experiments ✓ ✓ ✓

Teams that can roll back
experiments

Engineering ✓ ✓ ✓

Any team ✓ ✓

Audit trail included ✓ ✓ ✓

* Open source projects vary as to their capabilities. Values here apply to most open source projects in this category.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 10

Open Source*

Feature

Management A/B Testing

Full-Stack

Experimentation

Technical specs and
operational impact

Support for multiple programming
languages ✓ ✓

Integrations:

Chat tools
(such as Slack, HipChat) ✓ ✓

APM tools
(such as New Relic, AppDynamics,
Datadog, Jira, Librato, Rollbar)

✓ ✓

Webhooks ✓ ✓

Logging tools and exception
handling software (such as Sumo
Logic and Papertrail)

✓

Web analytics (such as Google
Analytics) ✓

Designed for minimal performance
impact (milliseconds) ✓ ✓

Technical debt management

Monitors ongoing status of
experiments ✓

Enables central view of
which experiments are complete,
so code can be cleaned up

✓

Integrates with ticketing system
for followup ✓ ✓

* Open source projects vary as to their capabilities. Values here apply to most open source projects in this category.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 11

Open Source*

Feature

Management A/B Testing

Full-Stack

Experimentation

Security, privacy, governance,
management

User data kept private
(not shared with platform) ✓ ✓

Permissioning system
(read-only for certain teams,
access to staging for engineers)

✓ ✓

Management console ✓ ✓

Ability to manage experiments
across development environments
(dev, staging, production)

✓ ✓

Engineering effort required for:

Platform setup High Medium Medium Low

 Experiment setup High Medium Low Low

Experiment cleanup
(tech debt management) High High High Low

Integrating/maintaining SDKs N/A Low High Low

Integrating event data per
experiment

 N/A N/A High None

* Open source projects vary as to their capabilities. Values here apply to most open source projects in this category.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 12

An experimentation

platform should

support your

long-term vision

and goals for data-

driven product

development. That

means selecting

or assembling

a solution

that enables

experimentation to

become a way of life

for all the teams in

your organization,
from product

management to

engineering.

CITO Research Recommendations for Selecting
an Experimentation Platform
An experimentation platform should support your long-term vision and

goals for data-driven product development. That means selecting or

assembling a solution that enables experimentation to become a way of

life for all the teams in your organization, from product management to
engineering.

Build versus buy

Open source platforms generally do not support ease of use for broader

teams, nor do they provide analytics to drive decision making (analytics
can be performed with the aid of data science resources).

Build versus buy decisions are not always straightforward. If you’re
leaning toward open source, we recommend considering:

• The impact of diversion of engineering talent from your own product

to an area that is not your core competency.

• Conducting at least one PoC to evaluate alternatives before deciding

to build your own solution.

• Limitations of open source platforms (e.g., most are tied to a single
development language, and many have no UI)

Room to iterate and grow

CITO Research recommends considering whether the experimentation

platform you’re evaluating offers room to grow in the depth, targeting,
and complexity of experiments you’d like to perform, the metrics you
would like to collect from those experiments, and the teams you’d like to
have support them. As with most mature software, initial use or a PoC
may not take advantage of all features. The question is which features
you need to support your own experimentation initiatives, both now and
in the future.

For example, consider criteria for targeting experiments. Do you want
to be able to target using customer characteristics in your databases,
customer location, and precise log-in time? Show a particular feature
only to customers who have purchased particular SKUs?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 13

Look for a platform
that aligns with your

most important

goals, particularly
in terms of metrics

you’d like to collect
and insights you’d
like to glean.

Do you envision broad support for data-driven product development?

If so, perhaps the most important area as you consider room for
growth and scaling is the number and makeup of the teams that may
eventually participate in experimentation. Experimentation platforms

vary widely in terms of the type of users they are designed to support.

Many open source platforms do not even have a UI, limiting those who
can participate to more technical users. Other platforms are designed

to allow multiple teams and cross-functional users to use one unified
platform to collaborate as needed. Look for a platform that offers proper
segmentation so that various groups conducting experiments can work
independently and don’t slow each other down while at the same time
guarding against mistakes could impact end users.

Align with business goals and policies

What is most important to your business? Response time? Privacy of user

data? Look for a platform that aligns with your most important goals,
particularly in terms of metrics you’d like to collect and insights you’d like
to glean.

Also consider how easily metrics can be integrated into experiments.

Can metrics be captured across all experiments, so that page load times,
conversion rates, or other key business metrics can be compared across all
the code you deploy? Platforms that capture a consistent panel of metrics

across experiments may require less setup and data integration work than
those that require you to set up metrics on a per-experiment basis.

Performance may be a key consideration business-wide, and you
may have high expectations in terms of response time for your users.

Experimentation platforms vary in terms of performance overhead; be

sure to evaluate the impact as you consider experimentation platforms.

Another area with business-wide implications is sharing of user

information with other platforms. For certain industries, this narrows
your choices to building or buying an experimentation platform that is

architected in such a way that experiments do not require sharing user

data. Even if that’s not an industry-specific or regulatory requirement, it’s a
point well worth considering as you evaluate experimentation platforms.

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 14

Look for a platform
that makes it
easy to clean up

experiments that

have run their

course.

Minimize technical debt

Experimentation means that multiple versions of features are deployed.

Look for a platform that makes it easy to clean up experiments that have
run their course. Creating branches in your code ultimately means that

unused code needs to be cleaned up. Look for a platform designed to
help you manage technical debt.

SETTING UP A SUCCESSFUL POC
After determining the criteria that are most important to you, the next
step is to launch a PoC where you prove the value of the solution to your

organization, with your teams and your data. The following sections offer
a suggested test plan and elements to evaluate during your PoC. Adapt

these resources to meet your needs.

High-level PoC test plan

Scoping, use

case, and design

Identify and define key evaluation criteria, and design

accordingly.

Onboarding Learn about the solution to get up and running quickly.

Cross-team

evaluation

Ensure that all relevant teams can participate in the PoC

(engineering, product management, data science, etc.)

Scheduling Set a timeframe for achieving PoC goals. Schedule

intermediary objectives to stay on track. Ramp up time

for the PoC can be an indication of the difficulty of

adopting the solution at scale.

Preparation and

evaluation

Prepare experiments and evaluate results (see “Product

evaluation elements” in the next section)

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 15

Product evaluation elements

PRODUCT
EVALUATION WHAT TO LOOK FOR

Scope and UX Evaluate the scope of tests and fit for intended users.

Scope Does the product support feature flagging, A/B testing at the UI level, or both?

Teams Is the product easy to use for all desired teams? Does it have a UI?

Tagging Can experiments be tagged for easy categorization?

Starred Can experiments be starred for easy retrieval?

Projects Are experiments grouped by project to simplify the user experience?

Targeting
Capabilities

Evaluate how the platform enables targeting of experiments.

Randomization
Does the platform enable you to roll out experiments to a random group of users,
determined by a percentage?

Targeting criteria What flexibility does the platform offer in terms of targeting criteria?

Time-based criteria Is time based targeting available? How narrow can the time window be?

Regex matching Is targeting criteria defined as an exact match or is it more flexible (starts with,
contains, etc.)?

Sets Can you target users with a set of characteristics (i.e., those who purchased
certain SKUs)?

Boolean Is Boolean logic supported in building up multiple targeting criteria?

Adding users Can you create reusable cohorts of specific users or must you add users one by one?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 16

PRODUCT
EVALUATION WHAT TO LOOK FOR

Analytics and
metrics

Evaluate the sophistication of the solution with regard to analytics per
experiment as well as changes in metrics across the environment.

Analytics capabilities
Does the platform have native analytics capabilities or are data scientist skills
required to analyze results?

Visibility Does the platform enable you to determine which users saw which experiments?

Trends:
Does the platform enable a view across the code base to see which experiments are
statistically significant?

Measures Does the platform provide the statistical significance measures you need?

Metrics and

event data

How are business metrics defined? How is event data correlated? Per experiment or
across the environment?

Causality Can you determine the cause of changes in metrics?

Rollback Evaluate how problems with experiments are handled.

Rollback point Can you define a rollback point if an experiment causes issues?

Rollback authority Who can roll experiments back if needed?

Audit trail Is an audit trail included?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 17

PRODUCT
EVALUATION WHAT TO LOOK FOR

Technical specs and
operational impact

Evaluate the technical capabilities and operational impact of the solution.

Programming

languages
Are all required languages supported?

Integrations Does the platform include integrations with other platforms you use?

SDKs Does the platform include SDKs? How are updates handled?

Performance What is the performance impact of using the platform?

Technical debt
management

Evaluate how the platform helps manage technical debt.

Status Monitors status of all experiments to facilitate identification of code for cleanup

Follow up Integrates with tools to assign cleanup tasks

Security and
management

Evaluate how the platform handles user data and its management
capabilities.

Privacy Is user data pushed into the platform?

Permissioning Can permission levels be assigned to various users?

Management

console
Does the platform offer a central view of all experiments?

Support across

environments

Does the platform enable you to manage experiments from dev to staging to
production?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 18

Speed to deployment
The faster you can get started with

experimentation, the faster you can start realizing
value from data-driven product development.

In the build-versus-buy equation, building takes
time and effort, and can take you into areas
not directly related to your core competency.

This in turn delays the value you could get from

features such as centralized management.

To assess costs versus speed to deployment,
use the Engineering Cost Estimator Worksheet
included in the Appendix. Add up the

engineering effort in weeks for each task and
multiply by the average cost per week for an
engineering FTE.

Costs to scale
Operational impact: The goal is to make sure
that experiments don’t interfere with each other
and don’t negatively impact the performance of
the product. Operations tools must exist or be

developed for this purpose.

• Experiment creation and collaboration: How

much self-service for creation and analysis of

experiments is supported? What parts of the

process have expertise bottlenecks?

• Experiment portfolio maintenance:

Experiments come and go, but they should
not live on in the code base forever.

Processes for maintaining a life cycle of tests

must be developed and supported.

• Data management: How is data for segments

managed? What level of personnel is required?

• Software support: Keep in mind the level of

support you’ll need from the vendor or your
approach to keeping open source up to date.
If you lack the needed expertise, this can also
have a major impact on team productivity.

ESTIMATING TOTAL
COST OF OWNERSHIP
After evaluating various platforms, the next
step is to determine your ROI, both short and
long term. Look to capture both your Capex and
Opex, including:

• Costs to get the platform up and running

• Ongoing costs to define, analyze, and clean
up experiments

Engineering costs
The amount of engineering work required to get
an experimentation platform up and running, as
well as its ongoing costs, varies widely. Estimate the
engineering time it will take to set up the platform
and onboard users. While this is an important

dimension, it captures only one aspect compared
to ongoing engineering costs, which include:

• Defining each experiment. How much can be

done by product managers versus engineers?

How long does it take? How would additional
work impact the overall backlog of requests?

• Keeping software up to date. How much

effort is involved? Must software libraries or
SDKs be synchronized? Is a separate server

required for synchronization?

• Tracking experiments across the

development environment. How much effort
is involved in moving experiments from dev

to staging to production?

• Analyzing experiments. Does analysis of

experiments require data science resources,
perhaps using a separate platform, or does
the platform facilitate analysis by various

stakeholders?

• Technical debt management. How much

engineering effort is required to clean up
experiments over time?

EVALUATION GUIDE

The Definitive Guide to Evaluating Experimentation Platforms for Product and Engineering Teams 19

The major Internet

companies have had

continued success

in large measure

because of their

experimentation

platforms and their

attendant ability to

innovate, capture,
and sustain market
share.

Total value of platform
Once you have assessed the engineering costs to support the types

of feature experimentation you want to support and the levels of

participation by all relevant parties, you’ll have a clearer picture of the
TCO and the ROI that the experimentation platform you’ve selected can
bring to your business.

MOVING FORWARD WITH ADOPTION
The major Internet companies have had continued success in large

measure because of their experimentation platforms and their attendant

ability to innovate, capture, and sustain market share. The obvious
problem with creating such a platform is the engineering investment

in building it and evolving it over time to support broad and deep

experimentation to enable data-driven product development.

Building a platform that offers the same type of enablement as web
scale companies enjoy is not a simple undertaking. Such a platform
must seamlessly fit into the CI/CD process, with minimal friction for
engineering teams. At the same time, the platform must provide
abundant data to drive product development, making sophisticated
analytics broadly accessible to all stakeholders. It must address privacy
and security concerns, and help manage the lifecycle of experiments
across the deployment landscape as well as sunsetting them gracefully

once they are complete. Its UI must enable all teams involved in product

development, from product management to architects to marketers. It
must support all the development languages in use today, and given the
adoption of microservices, that may be in use tomorrow.

CITO Research has assessed the experimentation landscape from

multiple angles, from data science to engineering to product
management.

From the research we’ve done, it seems that Split is furthest along

toward productizing full-stack experimentation for the following reasons:

• The convenience factor for technical teams before, during, and after
testing is a huge ingredient for success. Split’s engineering is focused
on making the developer experience smooth and seamless during
development, but also adding integrations that ensure that the code
base is cleaned up after experimentation.

https://www.split.io/

EVALUATION GUIDE

© 2018 CITO Research

CITO RESEARCH

• The integration of full-stack experimentation with capabilities and
practices that support A/B testing, agile, CI/CD, DevOps and feature
management is also crucial. While our research is focused on

understanding A/B testing, full-stack experimentation, and the deep
experimentation of the web scale companies, we see that Split’s vision
for a higher level of integration of development and research-based,
statistically mature product management is deserving of the name

they give to it: Feature Experimentation. Numerous integrations,
capabilities, and UX innovations allow Split to serve many audiences in
ways that feel natural.

• Finally, the full-stack experimentation space is new and evolving. It
is vital that when using products in such a space, you are eager to
grow in the same direction you want to go. Full-stack experimentation
is not a feature added to some existing system, but the final step
that integrates A/B testing, Agile, DevOps, CI/CD, and feature
management into a unified, research-based, statistically mature
product development process. Split’s feature experimentation vision

is the closest I’ve seen in any product to what I believe full-stack
experimentation will become.

Our recommendation is that organizations that are serious about

embedding experimentation into their agile product development

lifecycle conduct a PoC for Split.

We also believe in the value of products that are fully realized.

Organizations that consider open source solutions or rolling their own

often do so because there is simply no budget to consider alternatives.

If there is money to be made from a better product, you want to be
able to implement a wide program of experimentation as soon as

possible. Pretending you can get there with a limited amount of in-

house development must be weighed against the opportunity cost of

not engaging in data-driven product development. It is important to

do the math and understand the level of value at stake. In addition, we
believe engaging with an experimentation product that is fully realized

will teach you what experimentation really means to you and the whole

organization.

This paper was written

by CITO Research and

sponosred by Split

https://www.split.io/product/
https://www.split.io/

APPENDIX

APPENDIX: ENGINEERING COST ESTIMATOR WORKSHEET
Use this worksheet to estimate the engineering costs associated with the experimentation platform
you select. Determine the weeks of effort required, multiplied by the average weekly cost for an
engineering FTE.

Work Effort Required
(Weeks)

Total Costs
(# of Weeks x Weekly FTE Cost)

Platform setup time

Effort required to prepare data
for experiments

Effort to get needed targeting
capabilities in place

Effort to get required analytics
capabilities in place

Effort to handle set up of each
experiment*

Effort to analyze data from experiments
(data prep, data science resources)*

Effort to prune experiments
once complete*

Effort to field requests for creating
experiments (if there is no self-service
experimentation)*

Effort to determine impact of
experiments on operations

Effort to move experiments from
dev to staging to production*

* Multiply by the number of experiments anticipated per quarter or per year.

	EvaluatingExperimentation Platforms
	Determining Your Evaluation Criteria and Compare Options
	Comparing Options for Experimentation
	Platform Selection Matrix
	Early Adopter Research Recommendations for Selecting an Experimentation Platform

	Setting Up a Successful PoC
	High-level PoC test plan
	Product evaluation elements

	Estimating Total Cost of Ownership
	Engineering costs
	Speed to deployment
	Costs to scale
	Total value of platform

	Moving Forward with Adoption
	Appendix: Engineering Cost Estimator Worksheet

