

A Field Guide to Progressive

 Delivery and Experimentation

A guide to the terms and concepts you need to

 build a modern feature delivery and

experimentation program

Brought to you by

The Team at Split So�ware

A Field Guide to Progressive Delivery

and Experimentation

by Split So�ware

Copyright © 2021 by Split So�ware

Published by Split So�ware 10 California St.,
Redwood City, CA 94063

All rights reserved, including the right to reproduce this book or portions

thereof in any form whatsoever. For information, address the publisher.

While every precaution has been taken in the preparation of this book,

the publisher/author assumes no responsibility for errors or omissions, or

damages resulting from the use of the information contained herein.

ISBN: 978-1-312-78266-2

ID ye9qzp

First Edition

Table of Contents

Part I - Feature Flags and Progressive Delivery ... X

Blue/Green Deployment ..X

Canary Deployment ..X

Change Advisory Board ..X

Chaos Engineering ..X

Configuration Dri� ...X

CI/CD - Continuous Integration/Continuous Delivery ...X

Continuous Delivery ...X

Continuous Delivery Tools ..X

Continuous Deployment ...X

Continuous Integration ..X

Controlled Rollout ...X

Dark Launch ...X

Feature Branch ...X

Feature Delivery Lifecycle ..X

Feature Flag Management ...X

Feature Flags ..X

Feature Flags Framework ..X

Feature Rollout Pla ..X

Kill Switch ...X

Progressive Delivery ..X

Trunk-Based Development ...X

Part II - Measurement and Experimentation ... X

A/A Testing ..X

A/B Testing ..X

A/B/n Testing ..X

Client-Side Testing ..X

Customer Experience Metrics..X

Data Pipelin ..X

Do No Harm Metric ..X

Event Stream ..X

False Discovery Rat ...X

False Positive Rate ...X

Feature Experimentation ...X

Hypothesis-Driven Development ...X

Mobile A/B Testing ..X

Multi-Armed Bandi ... X t

Multivariate Testing ...X

Observability ..X

Server-Side Testing ...X

Simpson’s Paradox ..X

Smoke Testing ..X

Statistical Significance ..X

T-Test ..X

Testing in Production ...X

Type I Error ..X

Type II Error...X

Usability Testing ..X

9

Part I

Feature Flags and
Progressive Delivery

1110

Blue/Green Deployment

Blue/green deployment is a continuous deployment process that

reduces downtime and risk by having two identical production

environments, called blue and green. The names blue and green

aren’t special or important – this process is can also be referred to

as red/black deployment or A/B deployment.

Let’s consider a scenario, say the blue environment is active,

while the green is idle. When a developer wants to release new

code of any variety – a new feature release, a new version of the

application, etc. – the work on the new version is done in the

green environment while the old version is maintained in the

blue. Once the new release isfinished, the load balancer switches

all production traffic to the green version, and the blue version is

maintained as a backup.

A�er the green version is live for a while and all data indicates it

is bug-free, performing well, and driving the intended impact, the

old blue version is scrapped, the currently-live version becomes

the blue, and a new production environment clone is created to

become the new green.

Benefits of Blue/Green Deployment

The major benefit of blue/green deployment is that it facilitates

simple rollouts, quick rollbacks, and easy disaster recovery.

Have you ever had to deploy a feature release at an insane hour

because that was the only time you could take down the system

without losing sales? Or maybe you’ve had a hard time finding any

time to release because your business is global enough that the

middle of the night in one place is prime traffic time in another?

Blue/green deployment allows for zero downtime,

so the development team can make the switch and let the load

balancing system automatically shi� all users to the green version

instantaneously – no staying up till 4am required.

Have you ever been called in on a weekend to roll back a buggy

deployment? With blue/green deployment, the old version is

ready and waiting in case something goes wrong, so all that’s re-

quired for a rollback is to ask the load balancer to switch users

back to the blue version. This way, the programmers can come in

at a normal hour during the workweek to fix the issues with the

green version, then deploy it again when it’s ready.

What’s Safer Than Blue/Green Deployment?

There is a strategy even safer than blue/green deployment: the

canary deployment strategy. Using canaries, the team will not just

create two clones of production and test in only one, they will roll

out the new code slowly, testing on only a subset of users before

deploying to the entire user base. So in a new release, instead of

1312

an immediate switch from 100% of users seeing version blue to

100% seeing version green, the initial deployment can switch over

only 10% of users and leave the rest on blue. This controls the

blast radius on blue/green deployment.

Drawbacks of Blue/Green Deployment

There are some drawbacks to blue/green deployment. For

one thing, running two identical environments is expensive.

Whether you run multiple physical servers or multiple instances

in Kubernetes or Amazon Web Services (AWS), maintainining a

production environment AND a production-cloned staging

environment, which could be pushed to production at any time,

is not a simple task.

Furthermore, there is the database problem. The process of

maintaining two clones of production and pushing only one of

them live can cause all kinds of database problems. Do you clone

the database? Don’t clone the database? And what if the database

schema is going to be changed as a part of the new release? There

are no easy answers to be found here. Database refactoring can

fix the schema problem, and a mirror database can fix a few other

issues but in general, caution is necessary when any blue/green

deployment involves a database component.

Blue/green deployment is a great way to mitigate risk and prevent

problems from update downtime, but consider both the benefits

and drawbacks before diving in.

Canary Deployment

A canary deployment, or canary release, is a deployment pattern

that allows you to roll out new code/features to a subset of users

as an initial test.

Implement Canary Releases

When you implement a canary deployment you first create two

clones of the production environment, then have a load balancer

that initially sends all traffic to one version, and creates new

functionality in the other version. When you deploy the new

so�ware version you shi� some percentage – say, 10% – of your

user base to that while maintaining 90% of users on the old ver-

sion. If that 10% reports no errors, you can roll your new feature/

code out gradually to more users, until the new version is being

used by everyone. If the 10% has problems, you can roll it right

back, and 90% of your users will have never even seen the issue.

Infrastructure changes and configuration changes should always

be tested with canaries because of their sensitivity.

Why Canary Deployment?

Canary deployment benefits include zero downtime, easy rollout,

and quick rollback – plus the added safety from the gradual

rollout process. It also has some drawbacks similar to those of a

blue/gree deployment – the expense of maintaining multiple

server instances as well as the difficult clone-or-don’t-clone

database decision.

1514

Typically, so�ware development teams implement blue/green

deployment when they’re sure the new version will work properly

and want a simple, fast strategy to deploy it. Conversely, canary

deployment is most useful when the development team isn’t as

sure about the new version and they don’t mind a slower rollout if

it means they’ll be able to catch the bugs.

Where Did the Canary Deployment Concept

Come From?

You might be wondering why a little yellow bird is used to indicate

a test release of a new feature. To answer that, we’ll have to go

back to the coal mining days of the 1920s. Miners brought caged

canaries into the coal mines because they were highly sensitive

to toxic gases like carbon monoxide. When exposed, the canary

would become unconscious or die, alerting the miners to evacuate

the tunnel immediately.

In a similar vein, when you release a feature to a small subset of

users, those users can act as your canary, providing an early

warning if something goes wrong so that you can rollback to the

previous, stable version of the application.

Change Advisory Board

A change advisory board (or CAB) is a collective of

representatives from different departments within the company

who run that company’s formal change management processes.

They are tasked with reviewing and approving or rejecting

change requests before implementation is allowed to take place

in production.

In some environments, the change advisory board has no explicit

decision-making power, but instead makes recommendations to a

designated change manager, who makes the ultimate decision

about whether to let a change proceed. A change advisory board is

not directly involved in designing or implementing the proposed

change, which is why the process it conducts is o�en known as an

“external” review.

How to Set Up a Change Advisory Board

A change advisory board should be made up of one

representative from each team that may be affected by the

change. This group usually includes IT and business leaders that

can provide different perspectives on the changes being released.

It must meet on a regular basis and have a well-defined process

for submitting and reviewing change requests. To be successful,

a change advisory board must strike a balance between reducing

risk and allowing change to flow to stakeholders with the least

possible friction.

1716

The Evolution of So�ware Processes –

How We Got to Change Advisory Boards

Change advisory boards were implemented to improve the

visibility and coordination of changes that could impact multiple

stakeholders inside and outside of the information technology

function. The goal was to avoid situations where service delivery

becameunstable because “the le� hand didn’t know what the

right hand was doing.”

As systems and the larger organization’s dependency upon them

became more complex, fears of even an “isolated” change in one

part of a system impacting other seemingly unrelated parts grew,

accelerating the adoption of change advisory boards and

increasingly more stringent change management procedures.

Change advisory boards have been accused of creating significant

delays… Delays like weeks or months to get a change into

production while procedures are followed and approvals are

granted, and the risks of teams missing their change windows,

have called these boards into doubt.

Are Change Advisory Boards Going Away?

Rather than layering on more “external” review, many modern

so�ware companies that are embarking on digital transformation

efforts have sought to reduce the dependencies between systems.

Once systems are sufficiently isolated from impacting each other,

they expect the individual teams running each component to

“self manage” the change process. They may still retain a change

advisory board, but allow a wider latitude of decentralized

change management.

What’s Better than a Change Advisory Board?

Intuitively, small teams with full ownership of service delivery for

an isolated component are more likely to understand the impact

of proposed changes to their component than an external review

board would.

This decentralized approach delivers greater stability and

higher throughput of value than the prior model of managing

one or more monoliths through a centralized change approval

board. In fact, DevOps Research Associates (DORA) found that

organizations with lightweight or no formal change review process

significantly outperformed organizations with a change approval

board in terms of stability.

1918

Chaos Engineering

In any sufficiently complex so�ware system, failure is inevitable.

Given that this is the case, chaos engineering, also known as

chaos testing, provides a method and tool-set to deliberately

introduce failures and outages in a system.

This approach was pioneered by Netflix, who first created their

chaos engineering process in 2010, and shared it in detail in 2014.

Chaos Engineering and the Simian Army

In chaos engineering, a set of automated processes, known

collectively as a “Simian Army,” are used to introduce various

types of system failures. The colorful naming of these tools

evokes the mental image of chaos testing as a group of monkeys

wreaking unexpected havoc in a data center, an event for

which engineers must prepare as best they can.

Knowing for sure how a complex system will react to failures is

practically impossible. The only way to predict the results of

failures – especially catastrophic or cascading failures – is to have

them happen. Therefore, creating those failures yourself – in a

controlled way and at a time of your choosing – via chaos

engineering is a valuable learning exercise.

Understanding the failure modes of your system is particularly

important if you have high expectations around reliability, or if

you are operating in a less reliable environment – on top of cloud

infrastructure, for example. However, injecting chaos requires

a certain level of preparedness. You might want to try it out in a

pre-production environment first!

CI/CD - Continuous Integration /
Continuous Delivery

CI/CD is the acronym in so�ware development for the

combination of continuous integration (CI) and continuous

delivery (CD). It can also be expanded to include continuous

deployment, but to avoid confusion we’ll be using CD to refer only

to continuous delivery.

CI/CD is an extremely useful agile process for DevOps teams: an

effective CI/CD pipeline makes bug fixes easier, eliminates merge

hell, and speeds up the development process. Using feature flags,

it can even increase the safety of deployments and improve user

experience. Today, we’ll explain what each component of CI/CD is,

and how to implement them.

Continuous Integration

For most organizations, the standard of continuous integration is

that every member of the development team contributes to trunk

at least every 24 hours. This process makes it easier to find and fix

bugs because doing so in a small code change is easier than in a

large one. It also eliminates the merge hell that’s o�en caused by

long-lived feature branches. When each commit is a single day’s

work or less, the likelihood of one programmer changing code

that another’s code is dependent on shrinks massively.

Continuous integration depends on specialized tools in order to

integrate code changes from the myriad of different platforms that

developers work in and on. It also needs a set methodology for

validating changes.

2120

The most common methodology is Trunk-Based Development,

which involves committing every new code change to trunk. This

makes satisfying the requirements of CI easy and creates a gen-

erally fast-paced development environment. However, it isn’t the

only process for CI. It’s also possible to use a process like Gitflow,

so long as the pull request process is quick.

Continuous Delivery

Continuous delivery is the process of automating delivery of an

application to any infrastructure environment. (If that happens

to be the production environment, it’s termed “continuous

deployment”.) Typically, continuous delivery processes push code

to development, staging, or testing environments.

Not every CD tool works the same way, but commonly they will

automate the process of creating the infrastructure that the new

feature requires, moving code from the version control system

to the target environment, defining relevant environmental

variables, and otherwise setting up the target environment,

executing automated testing, and rolling back if those

tests fail.

Many so�ware tools can be used to automate a CI/CD pipeline,

the some of most common are Jenkins, CircleCI, Travis CI,

and Bamboo.

Using Feature Flags in CI/CD

A feature flag is a piece of conditional code that allows you to turn

features on and off without re-deploying. In a CI/CD workflow, it’s

possible to keep unfinished features behind feature flags, only

turning those flags on once the feature is complete. If the feature

is turned on and still has a bug, the rollback is as easy as flipping

a switch. In this way, using feature flags improves both the speed

and safety of your feature releases.

There are a variety of ways to implement feature flags, but for

teams implementing CI/CD, a comprehensive feature flag

management system is typically the best option. This prevents

the accumulation of technical debt when a flag is used to turn

off an incomplete feature and then le� in the code because the

management system will let you know the flag hasn’t been flipped

on or off in a while.

Configuration Dri�

More and more companies are beginning to understand that

using a staging environment to test features causes more harm

than good. Because this process separates where end-users will

interact with new features and where engineering teams will test

new features, something problematic is bound to happen.

Configuration dri� happens as these two (or more) environments

grow to be more and more different.

As engineering teams grow and their product evolves, changes

are made to both the configuration and the infrastructure of the

application. This change is called configuration dri�.

2322

Increasing the Divide Between Staging

and Production

Let’s look at a typical example of a configuration dri� in practice.

An engineer gets paged late one night because of an incident

with his mobile application. They look at the logs and identifies

the problem. In order to fix it, they need to update a specific

configuration in production. They make the change in production

and go back to sleep. Although the issue is fixed, they have just

created a divide between staging and production because they did

not make the same change in staging.

Many times, staging environments are not the same as production

because of changes made during incident management. Although

it is never anyone’s intent to create a difference between the

environments, that is generally what happens when there are

several environments in play.

As you are increasing the differences between your real-world and

test environments, the trust in your staging environment will

slowly decline. You will not be able to reliably test in staging

because the test results will likely be different in production.

Configuration dri� can cause unidentified bugs, as well as cost

your team time and money.

Automating the Creation and Maintenance

of Environments

One way to avoid configuration dri� is to apply

infrastructure-as-code principles. The idea here is you want to

replace manually trying to keep environments in sync with

defining the environment with so�ware and code. Then in the

code, you can apply the same configurations to all of

your environments.

The risk that happens when setting up environments manually

is that you don’t set them up the same way. It’s much more

consistent to have the computer make the changes

automatically. Ideally, you want to avoid repeating yourself in

code. Looking back at our example above with the engineer who

made the configuration change for prod, instead of making the

change for the one environment, they should have made it to a

script that defines all of the environments, then it would have

automatically been applied to all of the other environments.

Another way to avoid the issues caused by configuration dri� is to

set up feature flags to test your code in production safely. With the

removal of your pre-prod environments, not only will you not have

to worry about the status of your staging environments, but you

will be able to release faster.

2524

Continuous Delivery

Continuous delivery, similar to continuous integration and

continuous deployment, is a so�ware delivery process centered

around improving the speed with which development teams

release new features to end-users. But what is continuous delivery

exactly, and how is it different from the other two continuous

release processes?

What is Continuous Delivery?

The central idea behind continuous delivery (and therefore also

continuous deployment) is that of being able to release the

current version of the so�ware directly to the production

environment and to end-users at any time. The continuous

delivery process has two main prerequisites: first, everyone

involved in delivery must work closely together – this is frequently

called implementing DevOps practices – and second, as much of

the delivery process as possible must be automated – this is called

a continuous delivery pipeline (or CD pipeline).

Continuous Integration

Continuous integration is simpler to implement, and it frequently

serves as the foundation for both continuous delivery and

continuous deployment. Where delivery and deployment are both

so�ware release processes, continuous integration is a so�ware

development process: it happens before the deployment process.

Development teams usually implement continuous integration

because of the problems which arise from long-lived feature

branches; if they only pull and push to trunk once in a while, it

may turn out that one developer has changed the name of a

function in his feature that the other developer needs for hers.

The technical term for what happens when these two developers

both merge their new code to trunk is, aptly, “merge hell”.

Continuous integration is the process of avoiding merge hell by

continuously merging every code change to trunk (or “master” in

Git). By doing this, developers get used to the process of keeping

the trunk code clean while simultaneously pushing to it regularly,

and this opens the door to continuous delivery.

Continuous Delivery vs. Continuous

Deployment

Continuous integration is not technically required for continuous

delivery, though they go together o�en enough that there’s a

single acronym for development teams that do both: CI/CD.

By contrast, continuous delivery is required for continuous

deployment. This is because where in continuous delivery you

could push to production at any time, in continuous deployment

you do.

They both also have different sets of benefits and drawbacks. The

benefits of continuous delivery include the potential for more

frequent releases, less deployment risk, and more transparency

of development practices and progress (if something is deployed

2726

into the real production environment, or even a staging

environment cloned from it, that makes it seem more “done”

than if a developer just said it was finished).

The main drawback is that, because there is a stage of manual

quality assurance (QA) testing before changes can be deployed to

users, code can get hung up in those unit tests and not proceed

as quickly through the deployment pipeline as in continuous

deployment, where automated testing is the only safeguard

between the new code and the end-users.

Continuous Delivery Tools

Continuous delivery is the process of systematically keeping code

deploy-ready at all times. To shi� to a continuous delivery model

form another deployment method, several changes are required

in the operations of the development team, from improving

automated testing to implementing Agile and DevOps processes.

But above and beyond these changes, having the right tools to

facilitate your new continuous delivery processes is crucial to your

success. In this chapter we’ll explain some of the most popular

tools used by so�ware development teams implementing not only

continuous delivery but also continuous integration and

continuous deployment since there is significant overlap.

Version Control Systems

Continuous integration, the process of merging every new code

change back to trunk, is, though not strictly necessary, incredibly

useful for continuous delivery and deployment. Version control

systems (VCSs) are central to continuous integration because they

help development teams to track which changes were made when

and by whom, to eliminate bugs or potential problems as early as

possible. Perhaps the most well-known version control tool is Git

(and its online repository Github), but there are several other

popular ones, such as Subversion and Microso�’s Team

Foundation Server.

2928

Continuous Delivery and Deployment Tools

One of the most popular tools for both continuous delivery and

integration is Jenkins, an open-source, server-based, plugin-rich

application created in Java that automates many parts of the

so�ware delivery pipeline. Jenkins is particularly useful for

distribution across systems that are on different platforms and

its extensible automation allows it to be used as a continuous

delivery hub.

Bamboo, an Atlassian product, is an on-premises server for

continuous integration, delivery, and deployment which allows

you to create multi-stage build plans and run parallel automated

tests. It integrates seamlessly with Jira, Fisheye, and Hipchat.

The Java Secure Channel is a particularly useful tool for

continuous deployment in particular since it provides

deployment automation. Other continuous delivery tools include

AzureDevOps, Harness, and XebiaLabs.

Continuous Integration Tools

There are many specific tools that provide frameworks for

continuous integration, such as Travis CI and CircleCI. Both of

these tools integrate with Git to provide a seamless xperience for

the thousands of developers already using it as their VCS. In

addition, using containerization tools such as Docker and

Kubernetes, both of which have integrations to various CI tools,

can help with implementing continuous integration at scale.

Other Tools Used by CI/CD Teams

On top of the CI/CD-specific tools, there are horizontal tools that

are o�en used in the CI/CD space. These include Infrastructure as

a Service (IaaS) tools such as Microso� Azure, databases such as

MySQL and SQL Server, IDEs such as Eclipse, Visual Studio, and

Atom, and issue tracking systems like Jira.

When considering what continuous delivery tools to use in your

so�ware build process, think about scope and cost. What do you

need your tools to do for you, and how much are you willing to

pay for that functionality? Once these questions have definitive

answers, you can compare different tools to find the right ones for

your particular use case.

3130

Continuous Deployment

Continuous deployment is the practice of automatically

promoting code changes to production a�er they pass all

automated tests in a continuous delivery pipeline. In the absence

of continuous deployment, changes must be manually approved

before they are promoted (i.e., pushed or deployed)

to production.

Many continuous delivery implementations automatically

promote changes to a staging environment when all automated

tests pass. This allows developers, testers, or other stakeholders

to perform manual or exploratory testing before manually

approving a push to production. Continuous deployment removes

that final manual approval gate:

Benefits of Continuous Deployment

Continuous deployment brings significant advantages, but it

doesn’t come for free. Here are some of the advantages and disad-

vantages of choosing continuous deployment.

Speed

The most significant advantage of continuous deployment is

speed. Teams that practice continuous delivery routinely move

code from developer commit to production in just a few days and

o�en in just a few hours or minutes.

Speed, in turn, unlocks greater safety and innovation.

Safety

While it may seem paradoxical or counterintuitive that a faster

process without a manual review and approval step would be

safer, DevOps Research and Assessment studies have repeatedly

shown that teams with a short cycle time from commit to

production have significantly lower incident rates and

dramatically shorter time to resolve issues. They also achieve

better business outcomes, which leads to the next advantage:

innovation.

Innovation

Knowing that your team can safely push another deployment in

minutes when needed reduces the fear of making changes and

rolling them out. This creates a virtuous cycle of faster iteration

and faster learning.

Continuous deployment shi�s significant amounts of power and

responsibility towards the team that is writing code. This leads to

another paradox: Instead of leading toreckless, unchecked

behavior and decisions that don’t reflect business requirements,

continuous delivery places developers closer to end-users, and

that naturally leads to greater empathy, greater pride of

ownership, and a more effective feedback loop when iterating

towards desired outcomes.

Continous
delivery

Continous
deployment

test

deploy

to

staging

verify

manual
gate

deploy

to

prod.

test

deploy

to

staging

verify

automatic

deploy

to

prod.

33

32

Before we move on, take a moment to notice the contrast between

continuous delivery and legacy development patterns where a

development team cuts a release, passes it along to a separate

testing team, which in turn hands it off yet again to an operations

team to take live. The old ways diffused responsibility and placed

a disproportionate amount of it in the hands of teams that knew

less about the changes being made in a release and the

motivations behind them.

Disadvantages

The disadvantages of continuous deployment over continuous

delivery with a manual gate at the end are all related to the

amount of rigor you must have in place to get the benefits.

Incomplete Implementation Just Breaks Things Faster

Without effective stakeholder review, code review, automated

testing, and observability in place, continuous delivery increases

the risk of things going wrong. It can lead you to the same sort of

complex multi-layered problems that large batches create. It’s all

the grief of merge hell but live in production. Incomplete imple-

mentations o�en lead to “this just doesn’t work here” reactions

and a race back to old ways of doing things.

Implementation Takes Time, Commitment, and Culture

Moving to continuous deployment requires a sustained effort. The

cost in time and commitment and the need to shi� management

and team culture from a short-term deliverable focus to a long-

term process improvement focus may be too “expensive,”

depending on your context. If this is so, your efforts are better

spent incrementally achieving continuous delivery to the point

where the manual gate at the end is just a mere formality.

Achieve Continuous Delivery

If you are eager to reap the benefits of continuous deployment

but your team or organization is not yet ready to implement it

rigorously, consider focusing first on achieving continuous

delivery. Since there’s a manual gate at the end, you can address

issues with reviews and testing and overcome the limitations of

less robust production observability by having developers obtain

approvals and then “manually walk” changes into production one

at a time. This requires more coordination, and that probably

needs more waiting. Still, once you have orchestrated the

automation required to pass the mojito test, you are likely ready

to embark on continuous deployment.

It’s OK to Push a Button

Something to bear in mind is that even if you’ve achieved a

well-defined and well-operated continuous delivery practice, you

may still decide to keep a human-mediated gate before pushing

to production.

In his book, Continuous Delivery in The Wild, Pete Hodgson

reported that among the dozen or so teams he interviewed that

were successfully using continuous delivery practices to achieve

daily or more frequent pushes to production, only two had chosen

to do continuous deployment. Why? Their continuous delivery

practices were giving them almost all of the benefits of continuous

deployment, and the large amount of additional work required

to allow that automatic push at the end safely wasn’t worth the

small gain they would capture.

3534

Without Automated Tests, You Don’t

Have a Pipeline

It’s important to remember that any CI/CD pipeline, and especially

one that does continuous deployment, cannot function without

effective automated testing. Automated tests are the fuel that

moves code towards successful deployment, regardless of

whether that final deployment to production is automatic or done

with the push of a button.

If you can’t achieve team consensus that automated testing is

essential, you can’t implement continuous integration, and you

don’t really have a pipeline. Don’t be fooled by a pipeline that

simply kicks off automated builds upon commits or on a schedule.

Continuous Integration

Continuous integration happens when so�ware engineering

teams frequently integrate their code into a shared branch,

usually referred to as main or mainline, with a goal of discovering

merge conflicts as quickly as possible, rather than deferring

discovery of issues until some later milestone. A�er pushing up

new code, generally, automated tests will run and block the merge

if any test fails.

Continuous Integration: Push More O�en in

Smaller Increments

As part of continuous integration best practices, the goal is to

commit code frequently (daily, if not more o�en) and to build in

smaller increments that each focus on a limited scope. Working

this way makes it much easier to quickly identify where a code

problem exists when a test fails.

For teams new to continuous integration, the first task is to learn

how to break large problems down into multiple small increments

that can be coded, built, and tested independently. This is known

as incremental feature development.

The Difference Between Continuous

Integration and Continuous Delivery

O�en we hear the terms of continuous integration and continuous

delivery used together. Continuous integration happens when you

automate the process of integrating your code to main or master

to ensure there are no conflicts. Continuous delivery is when you

3736

automate the process of taking that shared branch (main) and

turning it into a deployable release thatyou can push to

production whenever you want. You need continuous integration

to do continuous delivery, which is why you frequently see them

mentioned together as “CI/CD.”

Continuous Integration is Not a Technology; it’s

a Practice

If you run automated tests against your code, it doesn’t

necessarily mean you are practicing CI. If you are not doing the

integration part, then you are not doing CI. Automated testing

happens when you integrate your branch with the main, or a

shared branch, not your local branch. This is the fundamental

principle of integrating changes. Just because you use Jenkins

or CircleCI doesn’t mean you’re doing CI. Some people feel like

if they pull from the main, they solve the problem, but it doesn’t

work that way.

The most common pushback on continuous integration is when

engineers are afraid of merge conflicts. Let’s look at an example.

Sally and Joe are two engineers on the same team who both have

their own feature branches they are working on. They are afraid

they will have merge conflicts. The way they resolve this is by

 continually pulling in whatever changes are in main. However, all

the code on Sally’s branch is not integrated with all of the code on

Joe’s branch because Joe hasn’t shared it yet, and vice versa. Until

they both merge to main, they will share the risk of having merge

conflicts. By keeping pull requests small and pushing to main

frequently, you avoid these conflicts.

Trunk-Based Development

Trunk-based development is a modern restatement of CI

principles. It takes the original ideas based on continuous

integration, development on the shared frequently integrated

branch and enables continuous delivery.

There are two types of development in trunk-based development

– feature branches and traditional trunk-based development.

When developing with a feature branch, a developer or a group of

developers will work from a feature branch and merge it to master

once the feature is done. In traditional trunk-based development,

a developer will divide their work into small chunks and merge

that into master many times a day. The difference here is scope.

3938

Controlled Rollout

A controlled rollout is a feature rollout with highly granular user

targeting. It allows you to release new features gradually, ensuring

a good user experience for smaller groups of users before

releasing them to larger groups.

Controlled Rollout Use Cases

There are two basic types of controlled rollouts: those where a

feature is released first to a certain percentage of all users, and

those where it’s released to users according to a specific attribute,

like IP address or location.

For the first type, the development team would start with the

feature release, in production, to 1% of their real user base. If that

randomly-selected 1% responds well – the team’s CX metrics have

either remained the same or improved, and customer support

hasn’t seen any significant increase in tickets – they will release

to 10% of users. If those users also respond well, they can roll out

until every user sees the feature.

For a few examples of the second type: the team could release

a feature first to New York, then to the entire United States, and

then the rest of the world; or, some number of users could

volunteer to beta test new features, and the development team

could select those users by a user ID, releasing the feature only

to them.

These types of controlled rollouts are o�en combined: for

example, a team could select only internal users by IP and release

to them, then release to the beta test user group, then release

to 1% of the entire user base, then incrementally roll out to

everyone.

If at any point there is a problem in any of these processes, the

team should be able to implement a quick rollback to the

previous version.

How to Implement Controlled Rollouts

One of the most common ways to implement controlled rollouts is

using feature flags and feature management systems.

Many feature flag management systems, like Split, come with

built-in targeting capabilities, allowing you to target users based

on just about any metric. You can use this capability, not only for

controlled rollouts, but also for creating subscription models,

hiding features behind paywalls, and merging unfinished features

to trunk with their feature flags turned off.

Not only do feature flags make the process of targeting easier,

but they also make rollback as simple as the click of a button.

You don’t even have to re-deploy your code: simply flip off the

feature toggle and your application is back to normal. You can

now easily fix the bugs without having to worry about the impact

on users (you only mildly inconvenienced 1% of them) and

re-deploy a�erward.

4140

Dark Launch

Dark launching is the term for releasing features to a subset of

your users, seeing how they respond, and making updates to your

features accordingly. It’s somewhat like what every project

manager does to monitor application health but focused entirely

on a single new feature.

In this modern age of continuous delivery and deployment,

feature releases are happening more frequently than ever before.

But at the same time, companies must maintain the quality in

their applications despite this fast-paced release cycle.

The Benefits of a Dark Launch

A typical dark launch begins by wrapping a new feature in a

feature flag. Once the feature is pushed to production, the

development team (or product manager, or even marketing team)

can begin turning the new version on for users, starting with a

small percentage like 1% or 5% and moving up to larger

percentages if everything continues running smoothly.

During this process, end-user feedback is being gathered, either

with direct methods like surveys or indirect methods like behavior

tracking. If the team monitoring the feature notices that it’s

causing trouble (users are converting less o�en, submitting more

help tickets, spending less time on the page or in the app, etc.),

they can turn off the feature flag with the click of a button and

have their working application back.

The Drawbacks of Dark Launches

The central drawback of using feature flags for anything is that

they can easily turn into technical debt. Unused feature flags can

clutter up codebases, in the end making it more difficult, not less,

to confidently release new features.

This is a solvable problem, however. Managing your technical debt

from feature flags can be done by only wrapping a piece of new

code in a feature flag if you’re sure you’ll need to turn it off and on,

and by ensuring your feature flag lifecycle is visible so you remove

unused feature flags a�er a certain period of inactivity.

Dark Launch vs. Canary Release

Dark launches and canary releases are fairly similar: both deal

with releasing new features in the production environment to a

subset of real users before releasing to everyone, and both

decouple deployment from release. However, there are a few

key differences.

For one, dark launches typically look directly at user response to

features on the front end. They’ll be used to release a new option

for a shopping cart on an e-commerce store. On the other hand,

canary releases are more commonly used to test new features on

the back-end. They’ll be used to transition slowly to a new

infrastructure.

43

For another, dark launches are commonly released to a group of

users that doesn’t know they’re being tested on and don’t have

the new feature pointed out to them in any way: hence the “dark”

in “dark launch”. On the other hand, users can sometimes opt-in

to beta test canary releases.

Feature Branch

A feature branch is a copy of the main codebase, where an

individual or team of so�ware developers work on a new feature

until it is complete. Once work is completed, a merge of the

feature branch back into the main codebase (or “trunk”) is

attempted. The longer a feature branch is open, the more likely

that the merge process will prove difficult.

Isolation, For Better or Worse

Feature branching became especially popular with the rise of

open-source projects. The isolation it provided allowed

independent developers to work on feature contributions at their

own pace, leaving the main branch untouched until a�er a code

review and merge. This isolation provided greater stability and a

clearly defined quality gate.

In commercial settings, where multiple developers are working

full time and the cost in time and lost momentum due to merge

conflicts is higher, the isolation created by a feature branching

approach can be a significant liability. Worse still, the relationship

between the length of feature branches and the complexity of

merge conflicts can lead to a perverse incentive where the team

avoids merging even longer. This, in turn, increases the chance of

a catastrophic “merge hell” situation that can derail a project and/

or lead to developer burnout.

Short-lived Feature Branches, Trunk-Based

Development, and Continuous Integration

Teams that use feature branches and want to limit the overhead

of complex merge conflicts have shi�ed to the use of “short-lived”

feature branches, where changes are scoped down into smaller

chunks that can be completed and merged back into the main

branch within hours or at most a few days.

As feature branches become shorter they become nearly

indistinguishable from trunk-based development and continuous

integration. The goal with these practices is to constantly be

merging back to the trunk in order to detect merge conflicts as

quickly as possible.

When a developer commits an hour of work and is notified of a

conflict in less than five minutes, it’s much easier to triage and

resolve the conflict than if they have to si� through days or weeks

of changes by multiple developers. The key benefit is forward

momentum and freedom from the fear of multi-hour or multi-day

merge conflicts.

Short-Lived Feature Branches and

Feature Flags

A large feature may take days or weeks to complete.

Decomposing it into smaller chunks that can be incrementally

built, tested, and committed in less than a day isn’t always

practical. Even if that chunking is possible, it might result in

various smaller components of the feature being live in the code

before the feature is complete and ready for users.

4544

Feature flags provide a consistent and safe way to control access

to these partially completed features, allowing developers,

testers, and internal stakeholders the ability to execute the code

in any environment, including production, without exposing the

partially completed work to users. As a result, feature flagging

has become a common practice adopted by teams moving to

short-lived feature branches, and a must-have for teams that

practice trunk-based development and continuous integration.

Short-Lived Feature Branches and Refactoring

Refactoring is the practice of improving the quality and

supportability of so�ware by revisiting existing code and making

changes. Refactoring fights the natural tendency for entropy and

“code smell” to increase over time. It’s most effective when it’s

done frequently and when it causes the least interruption or

distraction to the team. Since it’s common to run into merge

conflicts when refactoring is performed, refactoring isfar easier to

accomplish in a short-lived feature branch or full-on continuous

integration practice.

Conversely, teams that use long-running feature branches have a

strong disincentive to even attempt refactoring, let alone make it a

regular and consistent practice.

Short-Lived Feature Branches: The Best of

Both Worlds

Feature branches, when kept short, provide the benefit of a

well-defined process for review and acceptance of changes that

made them popular in the open-source movement and the benefit

of continuous integration’s reduction of complex merge conflicts.

Feature Delivery Lifecycle

We believe that modern application development happens at the

feature level. In the world of so�ware, the new unit of measure is

not the application, but the feature. To move fast, with a high level

of control and optimal impact, product development teams need

to take a lifecycle approach to feature delivery.

We call this process the Feature Delivery Lifecycle. This lifecycle

enables engineering and product teams to beat their competitors

to market with innovative products that delight their customers

and propel their business forward.

Phases of the Feature Delivery Lifecycle

Let’s start with a trip through the Feature Delivery Lifecycle at a

high level. As teams ideate how to solve customer problems, they

first develop a plan for a feature. This plan becomes a reality as

teams develop and deploy features, employing continuous

delivery best practices, developing from trunk, keeping work in

progress low, and making small changes that don’t break the

development flow.

Once deployed, teams progressively deliver the feature. It’s an

iterative target and release process. This reduces risk and unlocks

the ability to gather insights from customers in production. These

teams enrich feature flag data with other performance and

behavioral data, and then monitor individual features and

conduct experiments. These steps are critical. They capture

4746

performance degradation and measure success criteria that

otherwise are too hard to see. Monitoring captures performance

degradation over the minutes and hours a�er release and

experimentation captures success metrics over the days and

weeks a�er the release.

The last phase is learning and deciding. With data from feature

monitoring and experimentation, dev teams acquire the insight

they need to ideate, plan and start the cycle again.

This entire life cycle requires close management and governance.

Managing the state of each feature and how each flows through

the cycle is paramount. Governing multiple teams as they

contribute to building, releasing, and measuring features is

critical to reducing risk. Getting this right makes it possible to

iterate through this life cycle rapidly and predictably.

Deliver Value with the Feature Delivery Lifecycle

This iterative feature delivery life cycle, when it happens fast and

 consistently, allows teams to continuously deliver value to

customers and impact to their business.

The Feature Delivery Lifecycle meets enterprises where they are

in modernizing theirso�ware development technologies and

processes. Whether in the middle of adopting agile and DevOps

best practices, building a culture of experimentation, or both,

organizations can employ part or all of the lifecycle to help

achieve their goals, at any scale.

Centering modern so�ware delivery around this lifecycle is

ultimately how so�ware development teams beat competitors to

market and innovate features that delightcustomers and propel

the business forward.

4948

Feature Flag Management

Feature flag management is the process of, well, managing feature

flags. While feature flags are extremely useful for many purposes,

they require an organized process to manage.

There are two main types of feature flag management systems:

those which are built in-house and those, like Split, which are

purchased pre-built and o�en provide additional features, like

measurement and product experimentation. There are benefits

and drawbacks to both, and which solution you choose depends

largely on your organization’s needs.

Regardless of origin, any management system should do these

four things: provide a common framework for the whole

organization, serve up flags quickly and reliably, manage the

testing process, and help avoid technical debt produced by

unused flags.

Develop a Common Flagging Framework

The most critical thing a feature management system should do

is allow all teams to view and control the state of each feature,

ideally through an intuitive GUI. This means that not only

developers, but also product managers, sales teams, marketing

teams, and any other stakeholders will be able to toggle features

on and off.

As an important feature in this GUI, it should be possible, and

simple, to assign a certain person or team responsibility for a

feature flag. This is useful for implementing progressive delivery,

where over time, responsibility for features may transition

automatically from the developers to the project manager to the

customer success team.

Serve Feature Flags Quickly and Reliably

A well-built feature management system will make sure that the

use of feature flags doesn’t slow down the application for

end-users. In order to do this, it will likely implement client-side

caching to be more resilient. It will also likely use a content

delivery network (CDN) to ensure that feature flag information

gets to a user as immediately as possible

Manage Testing in Production

When your development team is implementing tests for your

features, you can use feature flags to test those features in

production. Simply add your internal teammates to receive the

new treatment, test in production with those users, and then turn

the feature flag on for everyone once the feature is ready. This

process ensures your features are working correctly in production

before your users have access to them.

5150

Avoid Technical Debt

Feature flag management is also critical for avoiding technical

debt. Technical debt is caused when feature flags outstay their

welcome: a flag that was supposed to be short-lived sticks around

a lot longer for any number of reasons; someone implements a

flag and then forgets it exists, someone turns a flag on

permanently and then forgets to remove it from the codebase, etc.

It’s possible to deal with a backlog of technical debt, but it’s hard

to do and even harder to prioritize so that it gets done. The best

way to avoid technical debt is to stop it before it starts and use

feature flags responsibly. Use a feature flag management system

that provides functionality to track how long it’s been since a

feature toggle was flipped. If a feature flag is no longer in use but

is still clogging up the code, you can see that and delete it

promptly. Check out these tips for feature flag maintenance.

Feature flags are an immensely useful tool for any DevOps or

continuous delivery team, but without proper management, they

can require additional effort, create technical debt and complicate

testing. As such, you should implement a feature management

system that will help your team to mitigate these problems.

Feature Flags

A feature flag, or feature toggle, is a so�ware development tool

used to safely activate or deactivate features for testing in produc-

tion, gradual release, experimentation, and operations.

In trunk-based development, changes to the code base are

consistently merged into the main trunk and pushed through

to testing and production in a systematic way. Feature flag best

practices are essential to maintaining the integrity and stability of

code deployment, as many different features and even multiple

feature branches can be included under unique feature toggles to

be turned on and off when necessary.

What is a Feature Flag?

In its most basic sense, a feature flag is a section of code

governing the execution of a specific so�ware feature, allowing

that feature to be “toggled” on and off without a new deployment.

When a developer wishes to add new functionality, the feature can

be implemented under a feature toggle in order to avoid

impacting the user experience until the functionality is complete

and verified in production.

How Feature Flags Work

By wrapping new feature code blocks with feature flags,

developers can merge new code into the main trunk without

affecting the release as a whole. New features can be activated

selectively and their effect on the overall platform is monitored.

5352

Features can be selectively enabled or disabled for specific groups

of users, allowing for individual features to undergo a phased

rollout that occurs in stages. Feature flags can also be used as

A/B testing tools by deploying two different versions of a given

feature at once, restricting each to a certain environment, and

enabling them for different groups of beta users to see which

performs better.

Importance of Feature Flags

With feature flags, it’s no longer necessary to bundle multiple new

features together for testing and release in a single, large periodic

so�ware update. Instead, it’s possible to perform continuous

delivery, an iterative development approach where features are

deployed, rolled out, and tested in a larger number of smaller

payloads. It’s not uncommon for release cadence to increase by

10x or 100x as teams go from quarterly or monthly “big bang”

releases to daily, weekly, or even hourly continuous delivery of

smaller, more easily observed rollouts.

Feature flags are an essential tool in modern so�ware develop-

ment. They enableorganizations to move faster while safely and

securely implementing, testing, and delivering new features. You

can try feature flags for free on Split’s Feature Delivery Platform.

Feature Flags Framework

A feature flags framework is a revolutionary tool for so�ware

development that allows individual features of a so�ware

product to be individually enabled or disabled. Feature flags allow

features to be centrally managed from outside of the application,

meaning they can even be turned on and off a�er they’ve already

been rolled out to end-users.

Why Use a Feature Flags Framework?

Any new so�ware feature needs to go through rigorous testing

before being rolled out as the default user experience. To

determine the optimal design, an experimentation period takes

place, during which separate test groups are provided with

different candidate versions of the planned changes. Each test

group’s usage is tracked against predetermined metrics that will

be used to identify the best-performing option.

The feature flag framework allows code deployment to occur sep-

arately from the live rollout, without any interruption in service.

The code for all versions of a new or updated feature can be de-

ployed simultaneously to all users, and the feature toggles can

then be enabled or disabled for the

version associated with each user test group.

5554

How to Use a Feature Flags Framework

An experimentation platform provides you with the tools to

perform a controlled rollout of new features through the use of

feature flags. A�er code deployment into the production

environment has been completed, the feature flags can be

individually enabled to roll them out to end-users. This allows

development teams to monitor the impacts of each feature, and

turn a feature off if it negatively impacts the customer experience.

Benefits of Feature Flags Framework

The feature flags framework offers many benefits even beyond the

pre-release testing of new features. Because they make it possible

to deploy code into a live production environment in a controlled

state, site maintenance and upgrades can happen without the

scheduled downtime they previously entailed. New features can

then be rolled out to a larger set of customers, or even globally

when success and safety metrics indicate the feature is ready.

Feature flags make it easy to quickly and smoothly disable

individual features, including decommissioning older features

that are being phased out. If a major bug or other issue is

discovered in a feature, a kill switch can take the feature flag

offline while the issue is corrected.

These are just a few of the reasons the feature flag framework

is proven to improve the so�ware development process while

minimizing the potential for the risks traditionally associated with

deploying features to a live production environment.

Feature Rollout Plan

A feature rollout plan is a process that allows the introduction of

a set of new features to a group of your user base. A good rollout

plan gives developers control of the releases in the development

cycle of a limited set of features. This way is possible to ship and

test specific changes into a control group before deploying to all

your users.

In the early stages of development, a small team could release

multiple changes to production every week or two. Testing the

impact of specific changes was difficult because of the noise

generated by releasing a large number of features at the same

time. Another problem development teams faced with the early

approach, was the risk of a full rollback if anything went wrong,

which eats up the company’s time and resources.

In response to this issue, many product teams started planning

and releasing specific changes to a set of users instead of full

feature releases. This approach allows for copious testing of the

new feature.

Advantages of Feature Rollout Plans

A good feature rollout plan can provide a solution. One of the

advantages is that it encourages collaboration and considered

planning. Instead of pushing new features to all users,

development teams are able to do controlled releases in the

development cycle by incorporating a release strategy.

5756

Sometimes a product with a large number of users will need major

changes. In this situation, a rollout plan makes a significant im-

pact on the success of those changes. Rolling them out in phases

or segmenting users into groups to test different features gives

companies the freedom to fully test the user interface and user

experience, as well as to run more tests. This creates a faster feed-

back loop, which allows dev teams to spend less time debugging

and more time building features.

Rollout Plans with Feature Flags

There are multiple ways to deploy new feature rollouts; one useful

method involves feature flags. Feature flags are a so�ware

development technique that lets dev teams turn features on and

off, without having to deploy new code. Using feature flags gives

companies the ability to perform more incremental

rollouts. It also fixes bugs in the code without redeploying, creat-

ing a smoother, more streamlined development cycle.

The Feature Rollout Process

To properly execute a feature rollout plan, you’ll need to

 implement careful planning, scheduling, controlling, and testing

a feature every step of the way until its release. The process goes

like this:

1. Design the new feature, examine the use case, and develop a

 timeline for completion.

2. Develop a release strategy that sets the parameters of release

 and a plan for incorporating feedback from your end-users.

3. Further develop the feature and manage its progress as it

 passes through various development environments.

4. Using feature flags to manage rollout and user targeting, test

 the feature. Then assess the quality of its performance with

 feedback from your users.

5. Launch the feature with the feature toggle off, then

 implement your rollout strategy.

6. Gather feedback so that you set in place a constant

 feedback loop.

7. Work with your team and product manager to monitor the

 feature’s continual release throughout the development

 cycle. This will allow you to make incremental changes based

 on user feedback and continually optimize the product as you

 release your feature to your entire user base.

5958

Kill Switch

In so�ware development, a kill switch is a button or toggle that

disables a feature if needed. This enables stakeholders to turn off

broken features in production simply and immediately, which is

o�en accomplished via a feature flag.

Before feature flags, if something were wrong, developers would

have to look through the logs, pinpoint the issue, analyze how to

fix it, write the code fix, test it, and then push it live to production,

all while the feature remains broken in production. Not a great

customer experience.

Incident Management Made Easy with

a Kill Switch

With a kill switch, when a feature breaks in production, you can

turn it off immediately while your team analyzes the issue.

This is ideal, especially when you get paged in the middle of the

night and find yourself less than eager to take on a code fix.

Having a kill switch allows you to quickly disable the feature, then

work on a fix at your leisure, and push it when ready, rather than

working under pressure to fix a production issue. Not only is this

great to promote a healthy engineering culture, but it also allows

anyone on the team to control the state of a feature, regardless of

if they code.

If there is an issue with your code, you won’t have to go through

an entire code review process or revert the change that caused the

problem. All you’ll need to do is log in to the feature mangement

platform, like Split, and click on the kill switch for that feature.

Isolate Code Changes

Let’s look at an example of a typical agile team using feature flags

in their so�ware development lifecycle. Once the team deploys

the code to production, and the product owner turns the flag on,

then based on your configuration, the entire user base, or a subset

of the user base will be able to see and interact with the new

feature. However, in a few weeks, if something goes wrong and

there is a bug with the new feature, what do you do?

In this exmaple, you can avoid rolling back an entire version of

your application because you isolated the change to a specific

feature. This also allows development on other features to

continue without forcing a complete rollback. In effect, you’re

isolating the change while your codebase evolves around it.

The Cost of a Kill Switch

Any additional implementation to your codebase comes with a

cost. Kill switches are no exception. The first cost is the

management cost. To maintain a codebase with feature flags, you

must continually be aware of the different flags’ states. If not, you

will likely be overwhelmed with the sheer volume of flags and

unable to maintain them properly. There is also a code cost. The

more extra code you add to your codebase, the more complex it

gets, and the harder it gets to reason about that code. There is

also a testing cost that comes with testing each new feature and

all its different variations. With all of that in mind, the benefits

clearly outweigh the cost.

6160

Progressive Delivery

Progressive delivery is the logical next step for teams who have

already implemented agile development, scrums, a CI/CD

pipeline, and DevOps. It includes many modern so�ware

development processes, including canary deployments, A/B test-

ing, and observability.

It is essentially a modified version of continuous delivery – in fact,

before the term “progressive delivery,” many people called it

“continuous delivery ++” – with two core differences. First, pro-

gressive delivery teams use feature flags to increase speed and

decrease deployment risk. Second, they implement a gradual

 process for both rollout and ownership.

So�ware Development with Feature Flags

The essential difference on the development side between CI/CD

and progressive delivery is the use of feature flags. A continuous

delivery team may do A/B testing, it may do blue/green

deployments, it may implement DevOps or GitOps. But unless

the development team is using feature flags, they’re not doing

progressive delivery. At best, they’re doing really well at CI/CD.

The reason feature flags are so important is because they provide

the opportunity for zero-risk deployment. By using a feature flag

management system, even junior devs and new hires can push

code to production: if the new version doesn’t work, you can

rollback with the click of a button. With feature flags, you can test

in production – not a very similar test environment, not a clone of

it, but production itself. This means that not only do you get to use

your real architecture, you also get to test on real users.

Some developers get antsy about this idea but remember, you

can roll back the feature instantly. So far as your users are

concerned, you’re not causing a massive shutdown, but a trivial

inconvenience. And this inconvenience is even further mitigated

by the second aspect of progressive delivery.

Gradual Rollout Process

Good feature flag management systems provide extremely

granular user targeting. This means so�ware delivery teams have

the ability to roll out to a small subset of users first, make sure

their feature works as expected, and if it does, gradually roll out to

everyone else. So in stage one, you release to the developers only;

in stage two, you release to a small set of users, and then if

nothing goes wrong, you slowly release to more users until

eventually, you’ve rolled out to everyone. This is useful because

not only can you switch a feature off at any time, but you cause

extraordinarily minimal inconvenience in the process. So not only

do you cause only a trivial inconvenience to your users – you

cause it to only 1% of them! This process of ensuring a minimal

number of users are impacted by a failure is commonly termed

“controlling the blast radius” of new features.

Gradual Ownership Change

Along with the process of gradually releasing a feature to more

and more users, propagating it outward from the dev team,

progressive delivery teams also propagate ownership outward.

When a feature is first released internally, the dev team owns it

and is responsible for fixing any bugs that might be present. A�er

its initial release to production, maybe the project manager owns

it. And a�er it’s been released to all users, the customer success

team probably owns it.

6362

While some execute this process manually, the most successful

teams automate the majority of this handover process, checking

metrics and events to tell the system when to switch the

release’s owner.

Gradual, and especially automatic, changes of ownership help

to ensure the feature is always being tracked by the most

appropriate team for the job. On initial release, the development

team that built the feature should be monitoring it to ensure it’s

working. A�er the feature is solid and released for everyone, the

customer success team can answer user questions and

gather feedback.

If you already have a great CI/CD pipeline, progressive delivery

may seem trivial. But having a separate word for “continuous

delivery with feature flags and canary deployment with gradual

outward propagation of ownership” is useful, because this

delivery process makes a major improvement on standard CI/CD.

It creates an environment that not only fails quickly but comes

back from failure quickly. And given that no system is perfect,

building your system to do well at handling failure is the next

best thing.

Trunk-Based Development

Trunk-based development (TBD) is a branching model for so�ware

development in which developers merge every new feature, bug

fix, or other code change to one central branch in the version

control system. This branch is called “trunk,” “mainline,” or in Git,

the “master branch.”

Trunk-based development enables continuous integration – and,

by extension, continuous delivery – by creating an environment

where commits to trunk naturally occur multiple times daily for

each programmer. This makes it easy to satisfy the “everyone on

the development team commits to trunk at least every 24 hours”

requirement of continuous integration, and lays the foundation

for the codebase to be releasable at any time, as is necessary for

continuous delivery and continuous deployment.

Styles of Trunk-Based Development

Depending on the size of the development team, two different

styles of trunk-based development emerge: small teams will tend

to simply merge every new change to trunk, while larger teams

may use short-lived branches, owned by one person/pair, or a

small team. These branches will be merged back to trunk within

days of being cut from it. (Any changes that require more than a

few days to make should be done using feature flags in a branch

by abstraction method in order to prevent “merge hell” from

long-lived feature branches.)

6564

Release Branches

The only long-lived branches in trunk-based development are

release branches, managed by a release engineer. Developers

don’t make commits directly to release branches, although the

release engineer may sometimes take a particular developer’s

commit and merge it into the release branch.

Release branches are never merged back to trunk. They are

created at the beginning of a major version and merged into from

trunk for minor versions, but when it’s time to begin another

major version, the existing release branch is deleted and a new

one is created from trunk.

Pull Requests in Trunk-Based Development

Many people think of pull requests and imagine GitFlow, which is

almost the polar opposite of trunk-based development (slow and

fault-tolerant, contrasted with TBD which is fast-paced and

developer-trusting). But pull requests do have a place in TBD –

under specific circumstances. Using feature branches responsibly,

a developer will, at any given time, still have some code that has

not been merged to trunk yet. A pull request could be made to

initiate a code review (especially an automatic one by a CI tool)

on this new code.

When to Use Trunk-Based Development

There are two key features of TBD to consider when deciding

whether or not to implement it. First, TBD has the ability to move

very quickly. Second, it’s very trusting of developers: no matter

what they do, they are trusted to not break the build. These are

commonly espoused as benefits of trunk-based development –

and they are – but no system works perfectly for everyone.

For example, a brand-new company that needs to create version

0.0.1 of its product as soon as possible and has a team comprised

of experienced engineers will work perfectly with TBD: everyone

who would be committing to trunk is trusted, and speed is critical.

However, a group of developers maintaining an established open-

source project will not: speed is less important for them, and they

can’t possibly trust every random person who opens a Github pull

request. The latter team would be better off using a more fault-

tolerant process (such as GitFlow).

6766

Part II

Measurement and
Experimentation

A/A Testing

A/B testing is the process of split testing two different variations of

a web page or feature by serving different versions of the feature

to specific percentages of users, gathering data over time until the

sample size is large enough, then finding whether there are

significant results for a key metric, such as conversion rate. A/A

testing involves running an A/B testing process with two identical

versions in order to ensure the testing process is in

working order.

Why Run A/A Tests?

A/B testing is an immensely valuable process for making

data-driven decisions about everything from web pages to feature

releases. A hunch that your conversion rate optimization could be

improved by making the CTA button larger is all well and good,

but if you’ve split your userbase into two groups and the one that

saw the larger button made 5% more conversions, that’s a very

different (and much better) thing. But an A/B test can be a

complicated process. How can you tell that your testing process is

operating properly?

This is where A/A tests come in. By running two identical features

through your A/B testing so�ware or other process, you can

ensure that the testing tool works as expected. With an A/A test,

you can answer these questions:

• Are users split according to the percentages you planned?

• Does the data generally look how you expect it to?

• Are you seeing results with no statistical significance 95%

 (or whatever your confidence level is) of the time?

6968

Let’s discuss that last point a bit further. If the two versions are

identical, why are the results statistically insignificant only 95% of

the time? Shouldn’t they be insignificant all the time?

If you have a 95% confidence level, that means you’re still wrong

5% of the time. Not all your data is identical – there is some

variation – and that variation causes “significant” results 5% of

the time, even when the versions are identical. This is called a

false positive.

A/A tests can help you to ensure that your A/B testing process is

working properly – you understand your data, the users are being

split into groups as you wanted, and your significance levels are

appropriate – so you can ensure that your A/B test results are

telling you exactly what you think they are.

A/B Testing

A/B testing, otherwise known as split testing, is the process of

testing two different versions of a web page or product feature

in order to optimize conversion rate or improve upon a certain

business metric. The two versions can be very similar, with only a

change in button color, or very different, with a total change in the

way a feature behaves.

How Does A/B Testing Work?

A/B testing is based on the scientific method, and the process is

very similar. To start with, gather relevant data on your current

features and see which ones have the most potential to improve

key business metrics. A�er you have the baseline data, look at

those features to see how customers are utilizing them, and

hypothesize a variation that could improve it.

Since the next step is to build the new version, you’ll want to

make improvements with similar expected user experience

improvement and prioritize them by how easy they are to build.

Then, pick a test to start with and build the new version. The old

version will be what scientists call the “control” and what we’ll call

Version A; the new version is the “experiment” or: Version B.

With front-end A/B testing, people typically assign Version A and

Version B to different sets of users and measure which set of users,

if either, had a higher conversion rate with statistical significance.

But there is a different kind of A/B testing that happens at a much

deeper level.

7170

A/B Testing with Feature Flags

While typical A/B testing happens on the front end, choosing

which version of the page is shown to website visitors, there is a

way to A/B test your product features as well: using feature flags.

Feature flags allow development teams to release a feature to

only a subset of users, which satisfies the necessary step of

creating two versions of a feature. All that’s le� to do is to

 integrate the team’s analytics platform with the feature flag

management system, such that the team can correlate the users’

behavior with which version of the feature they used.

A�er these things are done, the A/B testing process can be used to

find the expected user experience change when any new feature

or code change is implemented. Development teams can then

look at this information and adjust the feature accordingly. If the

change is significantly negative, they can find out what’s wrong

and roll back the feature so it performs as it did before running the

test. If it’s a positive impact, they can release the product feature

to a larger percentage of their customers.

A/B/n Testing

A/B/n testing is the process of A/B testing with more than two

different versions. The little “n” doesn’t refer to a third test, but to

any number of additional tests: A/B/n encompasses A/B/C, A/B/

C/D, or any other type of extended A/B test.

Despite these additional variations, though, A/B/n testing works

the same way as standard A/B testing: split users into groups,

assign variations(typically of landing pages or other webpages)

to groups, check the change of a key metric (typically conversion

rate), check the test results for statistical significance, deploy the

winning version.

A/B/n Testing vs. Multivariate Testing

Though they’re o�en confused, A/B/n testing is not the same as

multivariate testing. The key difference lies in how the variations

are controlled. Let’s use a webpage as an example. Say we have

an image and a call to action (CTA) button, and we have three

variations of each. If we run a multivariate test, it will

automatically test all possible combinations – in this case, 6.

However, if we run an A/B/n test, we hand-select which variations

we want to test, which is frequently less than every possible

combination. If we had a large number of different resources we

wanted to test, the number of different variations in a

multivariate test would grow exponentially – quickly requiring

massive amounts of traffic and time it would take to get

statistically significant results – but in an A/B/n test, we can

manually choose how many variations to deploy.

7372

A/B/n testing is more helpful in situations where getting results

is more important than learning or generalizing from them.

Multivariate testing, because of its granularity, is more helpful

where knowing the precise cause of an increase or decrease in

traffic is worth waiting for.

A/B/n Testing vs. Multi-Armed Bandit Testing

Another experimentation method, which happens to be most

commonly used in machine learning, is the multi-armed bandit

algorithm (MAB). Pardoning the esoteric, gambling-inspired name,

multi-armed bandits basically use a different set of assumptions

on how long an experimentation algorithm should spend on

exploring possible alternatives versus how long it should spend

exploiting those it has already found.

The process of A/B testing in general, and A/B/n testing, in

particular, explores possible alternatives and their effectiveness

for the test period before spitting out an answer and letting the

user exploit the opportunity it has decided is best. By contrast,

MABs dynamically explore and exploit in much shorter phases,

relying on the past effectiveness of explored opportunities to

decide on their next actions.

MAB testing is applicable to a broader range of problems than A/B

testing. A MAB can produce significant results more quickly than

an A/B test, and it can also automatically adapt to a changing

environment and provide the best alternative in each, where

several sequential A/B tests would need tobe run manually to

achieve the same result. However MABs are not perfect: if there

is any significant time between a change and its result – like an

email campaign taking a few days to convert a prospect – A/B

testing is far superior. Not to mention, MABs are more computa-

tionally difficult than A/B tests.

7574

Client-Side Testing

Client-side testing refers to any type of testing – commonly A/B

testing, but also multivariate testing or multi-armed-bandit

testing – that occurs in the user’s browser. This is contrasted with

server-side testing, where the test cases are decided on the

back-end (in the webserver) before they’re served to the end-user.

Benefits of Client-Side Testing

There exist a variety of testing tools that can make it easy to

implement client-side A/B testing. Many of them include a WYSI-

WYG editor that lets you easily change components in a visual

editor without needing to reach into the code at all. This type of

testing framework makes running tests on the client-side

extremely easy and intuitive.

It also makes it possible for marketing teams to run experiments

without needing to employ a front-end developer. Not a single line

of code needs to be written, not a single actual deployment needs

to happen until the experiment is complete. Once that happens,

the developers only need to be brought in if the winning variation

was one of the alternatives: otherwise, the alternate variations

can simply be scrapped and a new experiment can begin.

Another benefit of client-side testing is the additional user data

available. Because the variation hasn’t been decided until the

page loads in the visitor’s browser, more data can be gathered

about the user to determine which variation to serve. On the other

hand, server-side testing has less user data to work on, so it’s less

able to segment users.

There are some drawbacks to client-side testing, though. The

most common is that, since the test is implemented using

client-side JavaScript, the user experience can suffer. Depending

on the specific implementation, the page load time can get higher

as it takes a second to determine what variation the user should

see, or the user could see a “flickering” effect on the webpage as

the original version is displayed before the test variation displays

in its place. While load time issues are harder to fix, flickering can

be tactically improved by only using client-side tests for elements

below the fold.

The Lifecycle of a Client-Side Test

A client-side A/B test, like any other A/B test, begins with a

hypothesis. “We think changing the color of this CTA button

will improve conversion rate” is a classic example. Once the

hypothesis is determined, the variations can be created using

the visual editor and displayed to users using the testing tool.

A�er the test is complete, significance is calculated, and the

winning variation is determined, it’s time to implement the

winner. This is a key difference between client-side and erver-side

testing: when an alternate version wins in an experiment, the

actual deployment process is slower than in client-side testing

because the variations have not yet been built. With a server-side

test, the variations have to be built in order to be tested, so the

rollout process is extremely fast. However, on the converse, if a

test fails to produce significant results, the variations that cost

developer effort for a server-side test will have to simply be

scrapped, whereas no developer effort went into creating

variations in a client-side test. There is less cost to doing more

experiments if they’re done on the client-side.

7776

Client-Side Testing Use Cases

By now, you’ve probably realized that the question is not

“server-side or client-side testing, which is better?” – it’s

“server-side or client-side testing, which is better for you?”

You should probably use client-side testing if:

• You only need to test the front-end “look and feel” of your

 website or web application

• You’re either testing below-the-fold elements, or you’d like to

 run low-cost experiments only visible to internal users (aka,

 you’re in a situation where the flickering or page load issues

 don’t make a significant difference)

• You don’t want to expend the developer resources to do a

 deployment for each experiment

• You want to collect more user data before displaying

 different variations

If your use case doesn’t fit all or some of these criteria, you might

want to consider server-side A/B testing instead.

Customer Experience Metrics

Customer experience (abbreviated CX) is the experience your

customers have with your brand and application. Customer

experience metrics are organizational KPIs that help you monitor

your customer journey to see if there are touchpoints where you

are letting customer churn rate increase. In this chapter, we’ll

discuss some of the most commonly-used customer experience

metrics and explain the benefits and drawbacks of each.

Net Promoter Score (NPS)

The best way to find out what customers think of you is to ask

them directly. As such, the majority of CX metrics are self-reported

customer feedback – Net Promoter Score is no different. NPS is

designed to find not only your customer loyalty but more

specifically how inclined your customers are to promote your

brand through word-of-mouth.

The standard way to measure NPS is to find the number of

“promoters” (people who rate 9-10 on a scale of 1-10 for questions

like “how likely are you to recommend our brand to a friend”),

find the number of “detractors” (people who rate 1-6 on the same

scale), then subtract the percentage of the latter from the

percentage of the former. Higher numbers are better here.

Note that we’ve skipped out on the “neutrals” – people who would

rate 7-8. These people are not counted for purposes of NPS; the

reason being that they are not especially likely to promote nor to

spread bad word-of-mouth about your product, therefore, from

apromotion/detraction standpoint, they are neutral.

7978

One may wonder why we’ve skewed the entire distribution of

results to the positive end. Should the results not be categorized

more equally (ex. 1-3 = detractor, 4-7 = neutral, 8-10 = promoter)?

As it turns out, no – and here’s why.

When someone absolutely loves a product, they’ll tend to rate

towards the very top of the scale – 9 or 10, in other words. Some

people are sparing with 10s, but anyone who loves your product

will rate it at least a 9 of 10. When someone finds the product

pretty good but not worth raving about, they won’t rate it in the

middle, because the middle translates to a feeling of “ehh, it was

okay, I guess.” Still, they won’t give it a 9 or a 10. Therefore,

“neutrals” will tend to give ratings of 7 or 8. Anyone who gives a

6 or below will have a feeling about your product somewhere

between “ehh, it was okay, I guess” and “it was awful.” Both of

those count as bad word-of-mouth, so we count both

as “detractors.”

Customer Satisfaction (CSAT)

Customer satisfaction is a simpler metric: you just ask customers

to rate on a Likert scale how satisfied they were with the product.

The labels for this scale should be, in order, “very unsatisfied,”

“somewhat unsatisfied,” “neutral,” “somewhat satisfied,” and

“very satisfied.” The Customer Satisfaction score is the total

number of customers who were either “somewhat satisfied” or

“very satisfied.” With this metric, higher numbers are better. A

CSAT score measurement is o�en accompanied by a series of

 other, more open-ended questions to determine each individual

customer’s experience. This is useful for tworeasons: first,

listening to the voices of your unsatisfied customers can help you

find problems that hamper customer satisfaction so you can fix

the issues, and second, you can use the responses of your satisfied

customers to find what exactly your customers loved about your

product and do more of that.

Customer Effort Score (CES)

Customer effort score measures how hard your customer had to

work to achieve their goal, either with your customer support

team, with your website, or with your product itself. It’s an

extremely useful metric because it provides immediately

actionable insights.

Previous measurements of CES had the customer rate effort on

a 1-5 or 1-10 scale, but this was confusing, so nowadays most

measurements of CES rely on a question like “do you agree or

disagree with this statement: ‘it was easy to handle my issue,’”

and a Likert scale from “strongly disagree” to “strongly agree.”

Your CES score is the total number of customers who rated either

“somewhat agree” or “strongly agree.”

Drawbacks of Customer Experience Metrics

All these CX metrics are extremely useful and can provide

very useful insight into your customer engagement, loyalty,

satisfaction, and lifetime value. However, there is a drawback f

or all of them.

8180

These metrics do a pretty good job at measuring what we want

them to, but they aren’t perfect. When you rely on an imperfect

metric, you need to be careful not to prioritize improving the

metric over improving the result the metric is supposed to

measure. In the end, your CSAT score is not what really matters;

your actual customer satisfaction is.

Data Pipeline

Data pipelines automate the flow of data from one point to

another. In a data pipeline, you start with defining how data is

collected, and in what schema it should be collected. Then, you

can automate the process of how to extract the data you need

from the inbound pipeline, combine it with other data, and

validate your team’s KPIs by comparing the data to your baseline

metrics. This automated process reduces the risk of not collecting

the correct data and having to manually sort through the data you

have collected.

Use Your Data for Experimentation

When so�ware development teams run experiments for their

products, the first thing they need to do is collect baseline data.

This can include current conversion rates, average order value,

click rates, etc. Once you have a baseline, you can then set a

hypothesis of what you think will happen when you add a variant

to the existing experience.

If you are running an A/B test, for example, half of your population

will have the existing experience (the control) and half your

population will have a new experience (the experiment). When

data starts coming in through the data pipeline from both the

control and the experiment, you can compare the baseline data

from the control to the experiment. If the experiment gives you

8382

better results for your KPIs, you can confidently release that

experiment to the rest of your population knowing you are bet-

tering the user experience. However, if the data coming in from

the data pipeline shows a decrease in metrics, then you can confi-

dently end the experiment knowing it would have been harmful to

your user experience.

Establishing Causality Between Features and Metrics

By using a powerful data and experimentation dashboard, like

Split, you are able to drive deeper insights with advanced

analytics. Because all business decisions should be based on data,

you need to have a visualization of what your users are doing, and

how they are performing based on the experience they get.

With Split’s statistics engine, you can establish causality between

feature releases and company metrics, and you can add as many

variants as you want.

A Powerful Data Pipeline Means A Better

User Experience

The more powerful your data pipeline is in handling your data, the

better your user experience will be. The best data pipelines will

automate the influx of the data from your customers, transform

it into the schema you need, and make it easy to assess how your

features are performing.

For example, with Split’s integration with Segment, you can

collect the data you need, and send it to analytics, marketing, and

any other stakeholders. You can ingest the user data you collect

from Segment to power your A/B tests and feature release alerts.

This data can also be used to send Split impression data to your

warehouse or third-party applications. You should also be able to

store data for future use in case you want to collect baseline data

for another experiment later on. These properties of a strong

data pipeline make for a solid foundation for A/B testing and

experimentation.

Do No Harm Metrics

Do no harm metrics are metrics that teams use to ensure nothing

bad is happening to your team’s metrics due to a feature rollout.

Many times in product experimentation, you release a feature

through a canary release and monitor your metrics throughout.

 If your metrics show higher conversion rates and higher

engagement, you can continue to roll out the feature to your

entire user base. However, sometimes product managers monitor

metrics that are not necessarily tied to a specific feature release.

Product experimentation is a way to increase engineering

impact and progressive delivery while reducing the risk of moving

fast. A/B testing and multivariate testing can reveal user behavior

and user trends that you did not foresee. However, the most

crucial part of running an experiment is not the variants but

understanding why you’re running the experiment in the

first place.

8584

Testing to Learn vs. Testing to Launch

According to Sonali Sheel of Walmart Labs, there are generally

two reasons to run an experiment: Testing To Learn and Testing

To Launch. Testing to learn is about the iterative discovery of what

works and what does not, understanding customer behavior, and

validating or invalidating a hypothesis. On the other hand, Test to

Launch is about gradually rolling out a new feature to the entire

population while keeping a close eye on metrics. Product owners

launch a feature that’s expected to have a long-term, strategically

significant impact and run an experiment to (hopefully) show that

conversions and KPIs are not negatively impacted.

The Impact of Do No Harm Metrics

Many times in experimentation, product owners and business

stakeholders want to make sure that releasing a specific new

feature does not have a negative effect on any existing metrics.

They accomplish this with Do No Harm Metrics. This approach is

used by product owners to ensure that if they make a change, it

won’t make any existing user behavior worse.

The goal here is to watch your team’s do no harm metrics and stop

the rollout early if metrics degrade. Your team can accomplish this

with a percentage rollout. These metrics can include time to load,

conversion rates, click rates, etc. Test to launch is first and

foremost about mitigating risk. The idea here is to launch this

 feature unless it does something unexpected that you don’t want.

Test to launch uses the same underlying capabilities of an

experimentation platform, including managing selective exposure

of a new feature and observing the system and user behavior

differences between those who get a feature and those who do

not. Suppose you’re performing a canary release, or percentage

rollout, as a Test To Launch. In that case, your experimentation

and analytics systems must be connected so that you can

specifically compare what your Do No Harm metrics are for the

canary cohort vs. the control. In the analytics system, you should

be able to differentiate between the traffic coming in for the

experiment and the traffic coming in from the existing state. When

you can make this differentiation, you can see what impacts your

metrics and make more informed decisions.

It’s essential to not just release features for the sake of

proclaiming them as “done” but to ensure that features deliver

impact and don’t do any harm to key businessmetrics. Whether

you are building a business or widening an existing business, you

can use the same tactics to ensure your engineering efforts make

a difference you can be proud of.

8786

Event Stream

An event stream is a series of data points that flow into or out of

 a system continuously, rather than in batches. Event stream

processing (ESP) refers to the task of processing event streams in

order to identify the meaningful patterns within those streams.

Use Event Streams as Telemetry for Experimentation

In the context of an experimentation platform, an event stream is

the incoming telemetry of user and system behavioral data, and

event stream processing is the process of deduplication,

attribution, and statistical computation that transforms events

into the metrics upon which subsequent conclusions are made.

Examples of events as telemetry consumed by an experimentation

platform might include:

• At time “T” user “U” clicked the “show more info” button on

 the property listing page

• At time “T” system returned 6 rows to user “U” from a search

 query, taking 2.4 seconds

• At time “T” user “U” upgraded from “basic” to “pro” tier

Note that all events above have both a timestamp and an

association with a specific user. These two event attributes are

essential in order to associate the user with a particular cohort

and to know what the active experiment state was at that time.

Consider this example:

• A series of experiments are being run, at two-week intervals,

 to determine the optimal configuration parameters to pass to

 a recommendation engine in order to best meet the needs of

 your site’s user population.

• Users are randomly split into three cohorts, with each cohort

 being treated to a different set of recommendation

 engine parameters.

• User behavior (i.e. purchases, upgrades, unsubscribes) and

 system performance (i.e. response time, errors) are observed

 for two weeks.

• Based on the results of the first experiment, parameters are

 changed and another two-week experiment is run.

If we didn’t know which user the events were associated with or

exactly when the event occurred, we would not be able to allocate

the behaviors to the right cohort or know which version of the

parameter sets the behaviors occurred under. This is one reason

why data aggregated across different time boundaries (i.e.

monthly gross sales) isn’t useful as an event stream for

experimentation.

Prioritize Event Stream Selection

“If we have data, let’s look at the data. If all we have are opinions, let’s

go with mine.”

–Jim Barksdale, (CEO of Netscape Communications from

 1995-1999)

Experimentation is about using data, rather than mere opinions,

to inform decisions. If you’ve read this far, you probably agree

with that. That said, you don’t want to take that idea too far.

Rather than attempting to create an event stream from every

possible data point in your environment before you begin

experimentation, consider working back from the most important

metrics you will need to inform your decisions.

8988

For example, “Bookings Per Platinum Member” and “Average

Booking Price Per Platinum Member” are metrics calculated from

a stream of booking events that contain a timestamp, a user

identifier, the users membership type, and the booking amount.

That stream doesn’t need any data about clicks, scrolls, or page

counts. If “Ratio of Booking to Room Selection” is a metric you

wish to track, you’ll need to add an event stream of room

selection events. Working backward from the most important

metrics will ensure that you source the most important event

streams first, clearing the way for your most important

experiments early on.

Source the Needed Event Streams

The ideal event stream for establishing or expanding an

experimentation practice is a stream that already exists and can

be routed to your experimentation platform without custom

development work. Customer data platforms (CDPs) have

simplified the process of discovering and integrating these

existing streams, even to the point where a non-technical user can

configure and manage event stream flows. If you have access to a

CDP, by all means, start there.

In the absence of a CDP, you’ll either need to build an integration

thatextracts, transforms, and streams existing data to your

experimentation platform, or you’ll need to add new

instrumentation to create streams in cases where the data isn’t yet

being captured. Most platforms have a variety of options for this,

including SDK endpoints you call from inside your code, REST API

endpoints you call per-event or to bulk-load events, and

integrations that simplify the creation of event streams from other

platforms such as Google Analytics.

Source Event Streams from Batch Data

It’s worth noting that an event “stream” can be created

periodically from batched data (i.e. data that is only available

a�er a nightly or weekly processing cycle). Sure, the “stream” may

only flow now and then, but as long as the timestamps within the

batch are preserved, calculations of attribution and impact can be

accurately performed.

Look Outside the Box

Event data may need to come from a source outside the

application you are focused on. Consider the case where an

e-commerce team is experimenting with a free shipping offer for

customers who buy three or more items in a single online session.

If the same company’s brick-and-mortar stores have a return

policy allowing in-store returns of online purchases, then it would

be nice to know if the “buy three, get shipping free” cohort returns

more products than the norm, right? For that reason, sourcing

the event stream of in-store returns is critical for determining the

business value of the experiment results. Bottom line? Don’t limit

your thinking to your application’s data model when considering

data stream candidates.

9190

False Discovery Rate

False Discovery Rate (FDR) is a measure of accuracy when multiple

hypotheses are being tested at once, for example when multiple

metrics, or variations, are being measured in a single experiment.

False Discovery Rate Definition

In technical terms, the false discovery rate is the proportion of all

‘discoveries’ which are false.

When running a classical statistical test, any time a null

hypothesis is rejected it can be considered a ‘discovery.’ For

example, any statistically significant metric is considered a

discovery since we can conclude the measured difference is

highly unlikely to be due to random noise alone and the

 treatment is directly influencing the metric. On the other hand,

metrics which did not reach significance are statistically

inconclusive – they are not a discovery as it wasn’t possible to

reject the null hypothesis.

In the context of online experimentation and A/B testing, the false

discovery rate is the proportion of statistically significant results

which are false positives.

Or to write it algebraically:

Where N_falsely_significant is the number of statistically

significant metrics that were not truly impacted (false positives)

and N_significant is the total number of metrics that were deemed

statistically significant.

For example, if you see 10 statistically significant metrics in your

experiment and you happen to know that 1 of those 10 significant

metrics was a false positive and wasn’t really impacted, that gives

you a false discovery rate of 10% (1 out of 10). In this way the FDR

only depends on the statistically significant metrics, it doesn’t

matter if there was 1 or 1000 other statistically inconclusive

metrics in the example above, the FDR would still be 10%

Other Measures of Accuracy

Another common measure of the accuracy of a test is the False

Positive Rate (FPR). This is the probability that a null hypothesis

will be rejected when it was in fact true. In other words, it is the

chance that a given metric, which is not impacted at all by your

experiment, will show a statistically significant impact.

The important distinction between the false positive rate and the

false discovery rate is that the false positive rate applies to each

metric individually, i.e. each non-impacted metric may have a 5%

chance of showing a false positive result, whereas the false

discovery rate looks at all hypotheses that are being tested

together as one set.

The Family Wise Error Rate (FWER) is another measure of accuracy

for tests with multiple hypotheses. It can be thought of as a way

of extending the false positive rate to apply to situations where

multiple things are being tested. The FWER is defined as the

probability of seeing at least one false positive out of all the

hypotheses you are testing. The FWER can increase

9392

dramatically as you begin to test more metrics. For example, if you

test 100 metrics and each has a false positive rate of 5% (as would

be the case if you use a typical 95% confidence or 0.05 p-value

threshold), the chance that at least one of those metrics would

be statistically significant is over 99%, even if there was no true

impact whatsoever to any of the metrics.

When you are testing only one hypothesis (ex.: a test with only one

metric) these three measures will all be equivalent to each other.

However it is when multiple hypotheses are being tested that they

differ; in these situations, the false discovery rate can be a very

useful measure of the accuracy as it takes into account the

number of hypotheses being tested, yet is far less conservative

than the FWER.

The false discovery rate is a popular way of measuring accuracy

because it reflects how experimenters make decisions. It is

(usually) only the significant results – the discoveries – which are

acted upon. Hence it can be very valuable to know the confidence

with which you can report on those discoveries. For example, if

you have a false discovery rate of 5%, this is equivalent to saying

that there is only a 5% chance, on average, that a statistically

significant metric was not truly impacted. If you know your false

discovery rate is 5%, you can rest assured that 95% of all the

statistically significant metrics you see reflect a true

underlying impact.

Controlling the False Discovery Rate

As well as simply measuring the accuracy of a test, there are ways

to control and limit the accuracy to the desired rate through the

experimental design. The false-positive rate can easily be

controlled by adjusting the significance threshold that is used to

determine statistical significance. Controlling the false discovery

rate is more complex as it depends upon the results, which cannot

be known in advance. However, there are statistical techniques,

such as the Benjamini Hochberg Correction, which can be

applied to your results to ensure that the false discovery rate is no

larger than your desired level.

9594

False Positive Rate

The false positive rate (FPR) is a measure of accuracy for a test,

be it a medical diagnostic test, a machine learning model, or

something else. In technical terms, the false positive rate is

defined as the probability of falsely rejecting the null hypothesis.

False Positive Definition

Imagine you have an anomaly detection test of some variety.

Maybe it’s a medical test that checks for the presence or absence

of a disease; maybe it’s a classification-based machine learning

algorithm. Either way, there are two possible real-life truths:

either the thing-being-tested-for is true, or it isn’t. The person is

sick, or they aren’t; the image is a dog, or it isn’t. Because of this,

there are also two possible test outcomes: a positive test result

(the test predicts the person is sick or the image is a dog) and a

negative test result (the test predicts the person is not sick or the

image is not a dog).

Because there are two possible truths and two possible test re-

sults, we can create what’s called a confusion matrix with all pos-

sible outcomes.

Here are the possibilities:

• True Positive: the truth is positive, and the test predicts a

 positive. The person is sick, and the test accurately

 reports this.

• True Negative: the truth is negative, and the test predicts a

 negative.The person is not sick, and the test accurately

 reports this.

• False Negative: the truth is positive, but the test predicts a

 negative. The person is sick, but the test inaccurately reports

 that they are not. Also called a Type II error “ in statistics.

• False Positive: the truth is negative, but the test predicts a

 positive. The person is not sick, but the test inaccurately r

 Reports that they are. Also called a Type I error in statistics.

Measuring the Accuracy of a Test

By calculating ratios between these values, we can quantitatively

measure the accuracy of our tests.

The false positive rate is calculated as FP/FP+TN, where FP is the

number of false positives and TN is the number of true negatives

(FP+TN being the total number of negatives). It’s the probability

that a false alarm will be raised, that a positive result will be given

when the true value is negative.

There are many other possible measures of test accuracy and

error rate. Here is a short rundown of the most common ones:

• The false negative rate – also called the miss rate – is the

 probability that a true positive will be missed by the test. It’s

 calculated as FN/FN+TP, where FN is the number of false

 negatives and TP is the number of true positives (FN+TP being

 the total number of positives).

• The true positive rate (TPR, also called sensitivity) is

 calculated as TP/TP+FN. TPR is the probability that an actual

 positive will test positive.

• The true negative rate (also called specificity), which is the

 probability that an actual negative will test negative. It is

 calculated as TN/TN+FP.

9796

If you’re on the patient side of a medical test being analyzed like

this, you may care a bit more about two additional metrics:

positive predictive value and negative predictive value.

Positive predictive value is the likelihood that, if you have gotten

a positive test result, you actually have the disease. It’s calculated

as TP/TP+FP. Conversely, negative predictive value is the likeli-

hood that, if you have gotten a negative test result, you actually

don’t have the disease.

Feature Experimentation

Ordinary so�ware development is widespread with guesswork.

Some amount of data, plus some amount of the product

manager’s hunches, drives the decisions of what new features

the development team will create. Without some fairly major

shi�s in how development is done, this is almost how it has to be.

You have to guess how your users will react to a feature

because you can’t just show it to them and gauge their reaction.

With feature experimentation (o�en called product

experimentation, or digital experimentation), this dynamic shi�s

significantly. The product manager is able to make data-driv-

en decisions based on the actual performance of the features in

production because the new features are actually deployed to (a

small percentage of) the real user base. Instead of guessing user

reactions, the product team can deploy the feature in

production to a small number of users, using customer experience

surveys and KPI tracking to determine the feature’s effectiveness,

or even A/B testing or multivariate testing different versions of

features to find the best one.

The Benefits of Feature Experimentation

There are two central benefits of feature experimentation:

increased understanding of the user experience, and increased

ability on the part of the development team to improve it.

No matter how well you know your user base, you won’t be able

to predict their reactions perfectly. Instead of trying to do this

impossible thing, many teams have switched to testing new

features in production. When you can gather real-time data on

9998

how a new feature has impacted your KPIs – be they conversion

rate, page load time, or API response time – you can choose which

features to release to all your users based on a high probability

that those features will produce a positive business impact.

Implementing Feature Experimentation

If experimenting with features is so great, how do you go about

doing it? The most common way to do any type of product

experimentation is to use feature flags, which allow you precise,

granular targeting on who sees what features. Using a feature

flag-based experimentation platform (like Split), anyone – the

marketing team, the product team, the development team, the

product management, or anyone else – can toggle features on

and off.

This has an important benefit, when anyone can run experiments

and test product features, this creates a culture of

experimentation, inspiring everyone from all teams to test their

ideas and gather data. Feature flags have a host of other use cases

as well. They enable continuous delivery, promote DevOps, and

allow you to monitor features even a�er you deploy them to your

whole user base.

Hypothesis-Driven Development

If a so�ware engineer wakes up in the morning and hears

something that sounds like rain outside her window, she would

likely think it might be raining. Her hypothesis, that it’s raining,

drives her decision to look out her window. She knows ahead of

time that if she sees rain, it’s actually raining, whereas if she sees a

sprinkler running, it’s not. When she actually looks out her

window and sees rain instead of a sprinkler, she decides she

should bring an umbrella to work.

When she gets to the office, if she notices people aren’t clicking on

her website’s CTA button, she thinks the button might need to be

more visible. Her hypothesis, that the button isn’t visible enough,

drives her development process. When she wants to verify that the

button’s visibility is causing the low conversion rate, she creates a

new UI with a larger CTA button and tests it alongside her previous

UI (probably using A/B testing). She knows ahead of time that if

she sees a statistically significant increase in clicks from the users

who see the bigger button, that was the problem, whereas if she

doesn’t see an increase, it wasn’t. When she actually runs the test

and sees a statistically significant increase in conversions, she

decides to roll out the larger button to all users.

This is experimentation, using the scientific method to solve

problems, test hypotheses, and create effective solutions. We do

it all the time, o�en without even realizing it. In fact, many recent

technology-related processes use this model: agile, DevOps, and

the lean startup business model are based on the experimentation

mentality. Hypothesis-driven development (HDD) is just the name

we give to experimenting on the so�ware development process.

101100

The exact steps of hypothesis-driven development are:

1. Set up user tracking - Running experiments is impossible

 without tracking, so make sure that you have a way to track

 the impact of any changes or tests. A common way to track

 experiments is with a feature toggle-based experimentation

 platform like Split.

2. Define a hypothesis - When you define your hypothesis,

 you’ll also define your validation criteria – aka, how much

 evidence you’ll need to make a decision. Ensuring you know

 upfront what outcomes would cause you to make which

 decisions will prevent a significant degree of bias. Ask, “what

 will tell me this new product or feature is successful?”

3. Test the hypothesis - Set up the test and run it. In the

 so�ware development world, most tests take longer than the

 short period of time it takes to looking out your window to

 see if it’s raining: you’ll need to run the experiment for a

 while in order to gather enough data for statistical

 significance.

4. Act on the experiment results - Once you have a statistically

 significant result, act on it. Roll out, or rollback, the

 experimental feature. Note what worked and what didn’t,

 and keep running experiments.

Turning every new feature proposition into an experiment means

all your feature releases are driven by data. You’ll know what your

users want, and how the form of that desire shi�s over time. You’ll

know what features your users use and which they don’t, which

they want and which they only say they want. And because you

know these things, you’ll be able to create the best product for

your customers.

Mobile A/B Testing

A/B testing is the process of testing two variations of a resource by

showing different versions to different users, then comparing the

test results (aka, the differences in user behavior between the two

groups) for statistical significance. The process is essentially the

experimental method as applied to so�ware development.

There are two things that people mean when they say “mobile A/B

testing,” app store A/B testing and mobile app A/B testing. In this

chapter, we’ll focus primarily on the latter.

A/B testing for mobile apps is about as similar to standard A/B

testing as mobile app development is to standard so�ware

development. There are some key differences (for example,

mobile apps have unique features like push notifications that

developers can and should use), but the overall methodology is

the same.

The Mobile A/B Testing Process

Mobile A/B testing, as with any experiment, begins with data

gathering. What are your current metrics and what are some key

areas of your app that could improve along with those metrics?

For example, if you have an in-app purchase feature, how many of

your app users are using it? If your app has complex functionality,

are too many people dropping off in the user onboarding phase?

103102

A�er data gathering comes hypothesis formulation. What could

you change to fix these user engagement problems? What re-

engagement strategies could you use? A�er deciding on what

hypothesis you’d like to test, you build the new variant, split your

total user base in two, and serve one variant of the feature to

each group.

Many standard A/B testing tools can be used for mobile

applications, but ideally, developers should buy or build

tailor-made mobile A/B testing tools, or select a platform, like

Split, that can support both regular and mobile A/B testing. This

will let them take advantage of the unique aspects of the mobile

experience which are some of the reasons they built a mobile app

in the first place. It will also let them account for unique draw-

backs of mobile development. For example, somebody in the city

will have lower network latency than someone in the country,

but the app should work as well for both of them. Further, a lot of

mobile A/B testing tools have built-in visual editors which make it

easier for developers to design something that actual mobile

users will want to use. A�er all, how many times have we all

designed new features for our apps which looked really cool on a

simplistic desktop simulation, but that ended up looking awful on

a real smartphone screen?

Though the process is similar for A/B testing mobile apps as it is

for any other so�ware, understanding the unique aspects of the

mobile development process and keeping those in mind during

your testing process is paramount to designing and maintaining a

great app.

Multi-Armed Bandit

A multi-armed bandit problem is any problem where a limited

set of resources need to be allocated between multiple options,

where the benefits of each option are not known or are

incompletely known at the time of allocation, but can be

discovered as time passes and resources are reallocated. The

name comes from a particular visualization of this problem.

Imagine a gambler playing several different slot machines

(sometimes called “one-armed bandits”), each of which has a

different possible return (aka, some arms are superior to others,

but the gambler doesn’t know which ones). The gambler wants

to maximize his total reward and to do this, every round he can

choose an arm to pull from whatever number of arms he has.

Resulting from this predicament iterated over many rounds, the

gambler has two choices: he can either keep playing whichever

arm has had the greatest return so far, or he can take a random

action to pull some other arm, knowing that while some may be

more optimal than his current best arm, some may be less. In

machine learning, the tradeoff between these options is called the

exploration/exploitation tradeoff.

This may seem like a highly specific, non-generalizable problem,

but its applications range from clinical trials to financial portfolio

design to adaptive routing to feature experimentation. The

exploration/exploitation trade-off is seen in any agent incapable

of simultaneously planning and executing.

105104

And in general, multi-armed bandit algorithms (aka multi-arm

bandits or MABs) attempt to solve these kinds of problems and

attain an optimal solution which will cause the greatest returns

and the lowest total regret.

Types of Multi-Armed Bandits

There are different approximate solutions to the multi-armed

bandit problem. The simplest such solution is called the

“epsilon-greedy” algorithm, and all it does is, given a small

decimal value epsilon (ε), it spends ε% of the time exploring and

(1 – ε)% exploiting. This algorithm is called “greedy” because of all

the exploiting.

There are many variations on the basic epsilon-greedy algorithm:

strategies for finite experiments such as epsilon-first (pure

exploration followed by pure exploitation) and epsilon-decreasing

(decreasing value of ε over the course of the experiment), as well

as strategies which can be used on infinite or continuous

experiments, such as value-difference-based epsilon

(automatically reduced ε based on machine learning process)

and contextual-epsilon-greedy (value of ε computed based

on situation). There are also probability-matching (also called

Thompson sampling or Bayesian Bandits) strategies which involve

matching the number of pulls to the probability of a certain arm

being the optimal one. You may note similarities to A/B/n testing

in the process of finding the optimal alternative among many for

the purpose of exploiting it.

Benefits and Drawbacks

Multi-armed bandit algorithms are best used for two use cases:

either very shortexperiments where the time it would take to

gather significant data in an A/B test is prohibitive (like finding the

best headline for a hot new article), or else in very long or ongoing

experiments where waiting for a “final answer” from an A/B test

doesn’t make sense (like optimizing each user’s news feed).

The main problem with bandit algorithms is their difficulty to

implement. If an organization is falling at all short in their DevOps

practices, trying to implement a bandit will bring that out. Further,

because there aren’t many data scientists who are also excellent

programmers, bandits are frequently more expensive since they

take more people.

107106

Multivariate Testing

Multivariate testing is a method of experimenting with different

variations of particular elements in a feature implementation,

such as the headline, images, copy, etc in a landing page or

application launch screen, or other critical moments of truth in a

customer journey, in order to determine which variations of said

elements are best suited to improve conversions.

The method is similar to A/B testing, however, multivariate testing

experiments are run with a higher number of variables and

generally provide deeper insight on how to optimize your page. In

multivariate testing, your feature implementation becomes a

combination of elements which can be decomposed and tested

simultaneously.

To help break down this process, let’s assume you’re working with

the following elements: header, page images, and copy.

If you were doing a multivariate test of these elements, you’d

create variations of them:

Header 1 – Header 2 – Header 3

Image 1 – Image 2 – Image 3

Copy 1 – Copy 2 – Copy 3

The purpose of a multivariate test is to try out different versions of

these variations, as illustrated below:

Header 1 + Image 1 + Copy 1

Header 1 + Image 2 + Copy 3

Header 3 + Image 3 + Copy 2

Header 2 + Image 1 + Copy 1

Header 2 + Image 1 + Copy 1

As you can see, the number of possible variations can stack up

quickly, and this is using only three elements. The complexity of

a multivariate test can grow exponentially, making it difficult for

your team to manage. So�ware solutions allow you to run

multivariate tests more efficiently as they can experiment with a

multitude of possible combinations.

As the multivariate test gathers data over time, you’ll be able to

separate the wheat from the chaff and discern which combination

of the variations performed the best. For instance, maybe Header

2 + Image 1 + Copy 3 gets the most conversions, making it the

 winning combination that you decide to run with from then on.

How To Create A Multivariate Test

When creating a multivariate test, it is best not to include too

many elements since every element you include more or less

doubles the number of combinations you’ll have to

experiment with.

Not to mention that all elements aren’t created equal. For

instance, if your test includes headers, call to action buttons, and

footers, you may discover that footer variations make little impact

on conversions.

109108

Some good steps to follow when creating a multivariate test

(using a landing page example):

 1. Use your analytics data to do an evaluation of the page and

 identify what is and isn’t working with it.

 2 Once you know which elements are hampering performance,

 order them based on the amount of damage they’re dealing

 to the page’s quality.

 3. Formulate a hypothesis regarding the elements you want to

 test. Ask questions like: If I fix these issues, what impact will

 it have on the page’s conversion rate? What about the page’s

 overall performance?

 4. Launch the test, and as it is going, document it. Doing this

 formalizes the process and makes it easier for others to

 provide feedback on it later.

 5. Once the test is complete, analyze the results. Pay attention

 to what did or didn’t work and conclude whether your

 hypothesis was correct. You can use the data generated by

 the test to make appropriate changes to your web-page/app,

 or you can use it to create follow up tests.

Observability

Observability is defined as the ability of the internal states of a

system to be determined by its external outputs. With the

unknown unknowns of our so�ware’s failure modes, we want to

be able to figure out what’s going on just by looking at the

outputs: we want observability.

“Observability” is the hot new tech buzzword. But is this actually

a new concept, separate from monitoring? Or is it just a fancy new

term? Today, we’ll be explaining observability: what it is, how it

differs from monitoring and alerting, and why you should care.

One of the benefits of working with older technologies was the

limited set of defined failure modes. Yes, things broke, but you

would pretty much know what broke at any given time, or you

could find out quickly, because a lot of older systems failed in

pretty much the same three ways over and over again.

As systems became more complex, the possible failures became

more abundant. To try to fix this problem, we created monitoring

tools to help us figure out what was going on in the guts of our

so�ware. We kept track of our application performance with

monitoring data collection and time series analytics. This process

was manageable for a while, but it quickly got out of hand.

Modern systems – with everything turning into open-source

cloud-native microservices running on Kubernetes clusters – are

extraordinarily complex. Further, they’re now being developed

faster than ever. Between CI/CD, DevOps, agile development, and

progressive delivery, the so�ware delivery train is speeding up.

111110

With these complex, distributed systems being developed at the

speed of light, the possible failure modes are multiplying. When

something fails, it’s no longer obvious what caused it. We cannot

keep up with this by simply building better applications. Nothing

is perfect, everything fails at some point, and the best thing we

can do as developers is to make sure that when our so�ware fails,

it’s as easy as possible for us to fix it.

Unfortunately, many modern developers don’t know what their

so�ware’s failure modes are. In many cases, there are just too

many. Further, sometimes we don’t even know that we don’t

know. And this is dangerous. Unknown unknowns mean you

won’t put effort into fixing the problem, because you don’t know

it exists.

Standard monitoring – the kind that happens a�er release –

cannot fix this problem. It can only track known unknowns.

Tracking KPIs is only as useful as the KPIs themselves are relevant

to the failure they’re trying to detect. Reporting performance is

only as useful as that reporting accurately represents the internal

state of your system. Your monitoring is only as useful as your

system is monitor-able.

This concept of monitor-able-ness has a name: observability.

Implementing Observability

The key tools for implementing observability are metrics, logs,

and tracing.Metrics are a central part of any monitoring process,

but even when you have the right ones, you’re necessarily limited

by the constraints of linear time. People decide on metrics based

on failures they’ve already found and fixed in the past. But there

may be unknown unknowns: failures you haven’t seen before, and

therefore can’t anticipate.

Preemptively checking your metrics to find patterns is an option,

but this isn’t a replacement for being able to come back quickly

from a failure. In short, metrics are necessary, but t sufficient.

While metrics should be constantly tracked, you only look at logs

when your metrics are showing something strange you’d like to

investigate. They’re more specific and detailed than metrics, and

they exist to show you what happened in each event. Having

understandable, queryable, comprehensive logs is a significant

component of what separates the observable from the non-

observable system.

Tracing is really just a type of logging that’s designed to record

the flow of a program’s execution. Typically, tracing is more

granular than standard logging: while logs may say that a program

installation failed, a trace will show you the specific exception that

was thrown and when during the runtime it happened. Tracing is

frequently used to detect latency issues or find out which of many

microservices is not working. It’s especially useful for error

detection in distributed systems, to such an extent that this use

case has its own name: distributed tracing.

113112

The biggest problem with all logging, including tracing, is that the

volume of data storage becomes prohibitive, fast. Sampling is a

possibility, as was implemented in Google’s Dapper project, but

it’s not a perfect solution. For one thing, sampling is not easy or

simple: different logs may need to be sampled in different ways

and the sampling strategy will need to change over time. For

another, sampling is too rigid for some use cases. So while it may

be tempting to be like Google, using Google’s development

processes is only reasonable for companies on the same order

of magnitude as Google – if you’re smaller, you have much

more flexibility.

Different companies implement observability differently. Some

track dozens of metrics and some track only a few; some keep all

their logs and some downsample them aggressively. Which

 solution works for you depends heavily on your company, your

system, and your resources. But one thing is clear: observability

is a real thing, it’s important, and systems that implement it from

the get-go will be uniquely situated to spring back quickly from

failure when it happens.

Server Side Testing

Server-side testing refers to any type of testing – commonly A/B

testing, but also multivariate testing or multi-armed bandit testing

– that occurs on the web server instead of in the user’s browser.

This is contrasted with client-side testing, where the test cases are

rendered (typically using some type of testing tool) using J

avaScript during the loading of the web page.

Benefits of Server Side Testing

One of the main problems with client-side A/B testing is that it’s

almost certain to impact the user experience in some negative

way. If you use asynchronous JavaScript, the original page will

load first and then be replaced by the test variation, causing a

“flicker effect”. If you use synchronous JavaScript, however, the

page load time will suffer, and your end user will stare at a blank

page until the content loads.

Server-side A/B testing eliminates this problem completely. Since

the variation is determined before the resource is served to the

visitor’s browser, there is no flickering and no negative effect on

load time.

Another benefit of server-side testing is the ability to use it for

mobile apps, or other environments serving dynamic content.

This ability to be “omnichannel” helps businesses test variations

across multiple platforms.

The most critical benefit, though, is the ability to test the full

stack. Client-side testing tools may be simpler for marketing

teams to implement, but they can only test the look and feel of

115114

the website. If a development team would like to A/B test anything

on the back-end, like a new algorithm or a different database

query, they will need to use server-side testing.

The Lifecycle of a Server Side Test

To run experiments with server-side testing, just like any other A/B

testing, you begin with a hypothesis. “We think this new search

algorithm will be more effective,” or “we think this simplified user

interface will improve conversion rates,” or whatever it is. Once

the hypothesis is determined, all variations have to be built.

This is a key difference between server-side and client-side tests.

Using the type of WYSIWYG editor provided by many client-side

testing tools, marketing and product teams are able to perform

tests without having to actually implement the alternate

variations. On the other hand, all the different variations in a

server-side test must be actually implemented by the developers.

A�er the test is complete, significance is calculated, and the

winning variation is determined, it’s time to roll out the winner.

There is another key difference between server- and client-side

testing here: in a client-side test, once the winner is determined, it

has to be built and implemented, whereas in a server-side test, all

variations have already been implemented (and are probably just

behind feature flags), so it’s a simple matter of rolling out the

winner to all users.

So in short, server-side testing is slower when the alternate

versions don’t win (because the developers built them for

nothing), but faster when they do (because they’re already built

and just need to be rolled out).

Server Side Testing Use Cases

By now, you’ve probably realized that the question is not “server

side or client side testing, which is better?” – it’s “server side or

client side testing, which is better for you?”

You should probably use server side testing if:

• You want to be able to test across multiple platforms, from

 web applications to mobile apps

• You want to be able to test across the full stack

• You want to test without it impacting your users on the

 front-end, either from longer page load time or “flickering”

• You have the developer resources to do a deployment for

 each experiment

It’s much easier to implement this if you use a server-side solution

like Split, which can help you manage all your experiments in

one place.

117116

Simpson’s Paradox

Simpson’s Paradox, otherwise known as the Yule-Simpson Effect,

is a reversal paradox where the correlation found in each of

several groups either disappears or even reverses when the

groups are combined. It’s relevant in the context of many non-

experimental studies, including A/B tests.

Examples of the Paradox

One classic example of Simpson’s Paradox is from a 1975 study

of sex bias in graduate admissions at the University of California,

Berkeley. When considering the overall figures, there was a

significant difference between the percentage of male versus

female applicants admitted (44% out of 8,442 men were admitted,

vs. 35% out of 4,321 women). MHowever, when considering

 individual departments, the data showed a statistically

significant bias in favor of women (6 out of the 85 departments

were significantly biased against men, while only 4 were

significantly biased against women).

How can this be? It seems counterintuitive that this result is even

possible. Perhaps an example will help.

A Real Life Example

In a medical study, two types of kidney stone treatments were

compared: Treatment A (including all open surgical procedures)

and Treatment B (a specific, less invasive surgery involving a small

puncture). The result was that Treatment A was more effective for

small stones (93% success rate vs. 87% for Treatment B) and large

stones (73% vs 69%), but Treatment B was more effective when

considering both groups together (83% vs 78%).

In this situation, the confounding variable is the severity of the

case: doctors are more likely to prescribe the overall less effective

but also less invasive Treatment B for less severe cases, whereas

more severe cases are commonly prescribed Treatment A. Since

more severe cases have a lower base recovery rate, this pulls

down the perceived effectiveness of the treatment

disproportionately used for them.

A/B Testing

In a hypothetical example, say that a development team is

running two variants of a feature for their web application. The

metric they’re focused on is conversion rate, and they’re running

the test across two different browsers (Firefox and Chrome). They

assign 80 of 100 Firefox users to Variant A (and the remainder to

Variant B), and assign 20 of 100 Chrome users to Variant A (and the

remainder to Variant B). The conversion rate of Variant B is found

to be superior in each browsers individually (100% in Firefox

compared to Variant A’s 87.5%, and 62.5% in Chrome compared to

Variant A’s 50%). However, when considering both at once, Variant

A is the winner (80% overall).

The confounding variable here is sample size in each browser. The

number of users assigned to each variant is significantly different

(80 vs 20). As such, the total conversion rate numbers for Variant

A is dominated by Firefox, which has a higher conversion rate,

whereas the numbers for Variant B are dominated by Chrome,

which has a lower conversion rate. If the numbers were equal, we

would find that Variant B is the overall winner

119118

Considering Simpson’s Paradox

When considering any instance of Simpson’s Paradox, it’s critical

to look for an un-controlled-for third variable (such as department

competitiveness, case severity, or sample size), which explains the

paradox. Further, since the mathematics allows perfectly well for

a difference between aggregate associations and associations in

individual groups, the seeming “paradox” of Simpson’s paradox

arises from inappropriate use of causal inference in non-

experimental studies – that is, mistaking correlation for causation.

When considering whether an admissions program is biased, we

don’t care only about the correlation between the sex of a student

and the state of their admission, we care about whether a

university department may be biased against certain students.

Determining which of the two relationships – that of the

department or that of the whole university – is spurious is

dependent, not on statistics, but on other information about the

problem. No generalizable conclusion can be drawn about which

relationship is relevant, in instances of Simpson’s Paradox.

In A/B testing in particular, sample size is the most common

confounding variable. This makes it easier to detect Simpson’s

Paradox and correct it in your feature experimentation. So long as

users are evenly distributed between variants, browsers, and any

other potentially-relevant categories, Simpson’s Paradox is

unlikely to show up and confuse your results.

Smoke Testing

Smoke tests are a type of regression test which ensure that your

most important, critical functional flows work. These tests should

not encompass your entire testing suite, rather they are a subset

of tests that cover your top prioritized user flows. These are

usually end-to-end tests that are executed in the build pipeline

and are blocking, which means if any of them fail in a pull request,

they will block the pull request from being merged. This blocking

aspect of smoke testing is important because if the code you’re

trying to push breaks a critical flow, you either need to update the

test if the requirements have changed, or fix your code to ensure

proper functionality of the feature.

Why Implement Smoke Testing?

Smoke tests should be put in place to ensure that your new code

has not broken any existing functionality, and ideally they should

be run in production. In so�ware testing, you don’t want to be

reactive – you don’t want to wait until a feature breaks, have a

user report it to you, and then push a fix. You want to know if

something is wrong before your users ever experience anything

wrong. As a developer, smoke testing gives you that confidence

you need to know you are releasing new features without

breaking existing functionality.

Smoke Tests vs. Unit Tests

Both smoke tests and unit tests should be implemented in your

build pipeline. Smoke tests should cover high-level end to end

functionality, where unit tests should coversingle component test-

ing. Both should be present, and one should not replace the other.

121120

Statistical Significance

When people discuss A/B testing, they commonly throw around

the term “statistical significance” a lot. But what does this mean?

In short, getting a statistically significant result means that the

result is highly unlikely to be the product of random noise in the

data, and more likely to be the result of a legitimate, useful trend.

To understand statistical significance in detail, we’ll need to

explain three key concepts: hypothesis testing, the normal

distribution, and p-values.

Hypothesis Testing

Statistical hypothesis testing is just a formalization of something

simple we do all the time. You begin with an idea about how

things might be – we call this the alternative hypothesis – and test

it against its opposite – which we call the null hypothesis. For

example, when you hear water falling on your sidewalk, your

alternative hypothesis might be that it’s raining outside, whereas

your null hypothesis would be the opposite: that it is not

raining outside.

In a more complex experiment with a larger sample size and less

clean-cut results, it’s important to verbalize your null and

alternative hypotheses so that you can’t trick yourself – or anyone

else – into believing you were actually testing something else.

The Normal Distribution

You may have already heard of or seen the normal distribution:

it’s also called a bell curve, though it looks a bit more like a

rollercoaster than a bell. The center of the normal distribution is

the mean (average) of the data set. The steepness of the curves on

either side are determined by the standard deviation, which is a

measure of how far away the data gets from the mean. If most of

the data is close to the mean, the standard deviation will be small

and the curve will be narrow; if most of the data is farther from the

mean, the standard deviation will be large and the curve will

be fat.

The normal distribution is most useful for finding how

 anomalous a data point is. The height of the curve at any given

point is the probability that a randomly-chosen data point will be

that distance from the mean: for example, the probability of

finding a data point that is +1 standard deviation from the mean

(otherwise known as a z-score of 1) is 34%. So as the curve

becomes shorter toward the ends, it becomes less and less

probable that any given data point would be found that far away

from the mean. In the same way, more standard deviations, or a

higher z-score, means a less probable result.

0.15% 2.5%

13.5% 13.5%

34%34%

x̃- 3
0

x̃- 3
0

x̃- 0 x̃+ 0
x̃+20

x̃+30

0.15%2.5%

x̃

123122

P-Values

The p-value is the probability of observing results as extreme, or

more extreme, than those measured, in a world where the null

hypothesis is true.

Before we begin any experiment, we should decide on a p-value

todetermine our minimum significance level. This value,

commonly called alpha, is most commonly set at 0.05 (which is

why you’ll commonly hear scientists and statisticians say that a

result is significant “at p<0.05”). However, values between 0.1 and

0.001 are commonly used, depending on the discipline.

When setting alpha for your experiment, be aware that it directly

corresponds to your confidence interval. If you have a study

done at p<0.05, you can be 95% confident those results are

significant, and not a result of random noise. If you use

p<0.0000003, as the physicists who discovered the Higgs Boson

did, you can be 99.99997% confident the results are significant.

Consider the risk of your experiment: you may be alright with a

confidence level of 90% if you’re testing a relatively low-impact

low-risk feature, whereas if you’re testing something mission-

critical you may want a confidence level closer to 99.7%.

How Statistical Significance is Calculated

Putting all these three pieces together, let’s do a simple example

with minimal math. Let’s say we have a coin, and our alternative

hypothesis says it’s weighted towards heads (which means our

null hypothesis is that it’s balanced, aka, not weighted toward

heads or tails). We choose an alpha of p<0.05 for our test. Now

let’s say we flip the coin 10 times, and 9 times it comes up heads.

The p-value for that outcome, according to the normal

distribution, is 0.01 – so we have significant evidence to reject

the null hypothesis.

That’s it – this really is that simple. Even with more complex

experiments, you’ll need about three lines of Python or R code

for the calculation of the p-value, and a little bit of algebra for the

other pieces.

125124

T-Test

A t-test is a type of hypothesis test which assumes the test statistic

follows the t-distribution. It can be used to determine if there is a

statistically significant difference between two groups.

The t-test is the hypothesis test of the t-distribution. The

t-distribution is a particular kind of probability distribution,

similar to the normal distribution but the variance is estimated

rather than known. There are various different types of t-tests; any

hypothesis test which relies on the assumption that the parameter

of interest follows a t-distribution falls under the t-test family. A

t-test results in a t-score, which can then be translated to a p-value

for easier interpretation and to determine statistical significance.

There are different versions of the t-test that can be used in

different scenarios, the three main types are:

Independent Samples T-Test

This is the type most commonly used in online experimentation.

It compares the means for two independent groups. For example,

when you randomly assign all visitors to a website into one of two

groups, you are creating two separate samples of visitors who are

independent from each other. The independent samples t-test can

be used to test for differences between the average behavior of

users in those two groups.

Paired Samples T-Test

This type of test is used for paired data, when each measurement

in a sample is paired with a measurement from the other sample.

For example in a repeated-measures design, each pair may

contain measurements for the same unit before and a�er a

 treatment, or in a matched-pairs design each unit may be

matched with a similar unit from another sample.

One Sample T-Test

The one-sample t-test can be used to determine whether the

mean of a single sample differs from a particular value. For

example, it could be used to determine whether the average exam

score for a class of students differs from a particular target.

127126

Testing in Production

Testing in production is the process of testing your features in the

environment that your features will live in. It does not mean

releasinguntested code to users and hoping it works, but rather

using feature flags to test the different treatments. This is best

implemented in addition to pre-production testing processes, and

should not replace all testing.

Deployment vs. Release

In order to explain testing in production, we should first explain

the difference between deployment and release.

Deployment means pushing a piece of new code live to the

production environment. It does not mean it is actually handling

production traffic. Deployment, as such, is a near-zero-risk

activity to end users. Release, on the other hand, is the act of

exposing end users to a new version. This is what actually impacts

user experience, and as a result, it can be risky.

From these definitions, technically we should be saying “blue

green release” instead of “blue green deployment”, and “canary

release” instead of “canary deployment”, because what these

tools are actually impacting what the customers see, not just what

code is in production. And likewise, it’s not technically a bad

deploy; it’s a bad release that causes outages and

angry customers.

The Shortcomings of Staging

For so�ware testing to be effective at predicting how a rollout

will perform under the stress of production traffic, the test

environment has to be as close to the production environment

as possible. One way to attempt this is to maintain a staging

environment, and try to keep it as in-sync with production

as possible.

However, the trouble with this is that differences between staging

and production systems occur regularly, o�en of necessity. For

example, different instances of stateful systems like databases

must be run in order to maintain data integrity. Further, the

staging environment is commonly on a differently-sized cluster

than production, with different configurations for things like load

balancers and queues, and with less monitoring.

Again, most of this can be fixed or mitigated, but trying to do that

necessitates having a group of so�ware engineers spend a lot of

time ensuring staging is as close to production as possible. And

because production is constantly changing, this time has to be

spent continuously.

This isn’t to say that staging is wholly unnecessary, or not useful.

It is saying, though, that testing in staging should not be the only

testing you do before you release to your end users. Some tests

can be done perfectly fine in staging – but other tests work much

better in production with production data. Ideally, testing in

staging should be a precursor to testing in production. Neither

one should replace the other.

129128

How to Test in Production

One of the best ways to eliminate the risks of testing in production

is with feature flags. Essentially, a feature flag is an if/then

statement which is wrapped around a new feature, allowing the

so�ware development team to turn that feature on and off

without deploying any code changes.

This prevents a lot of the worst failure modes of testing in

production. It enables disaster recovery by providing a kill switch

for each feature, allows for near-real-time monitoring of feature

releases to check for performance degradation, and prevents

testing from creating a poor user experience. Further, feature flags

allow for more in-depth A/B testing, easy canaryreleases, unique

benefits for DevOps organizations, and even increased

observability.

With a feature flag management system like Split, it’s easier than

ever to effectively manage production testing and gain the

benefits of testing on real users with production data.

Type I Error

A type I error (or type 1 error), also called a false positive, is a type

of statistical error where the test wrongly gives a positive result,

when a perfect test would report a negative. It is one of four

possible results from a hypothesis test.

What is Hypothesis Testing?

Hypothesis testing is the process of testing a hypothesis against its

opposite to find whether it’s true or not. If we want to test if two

variables are related, the alternative hypothesis states that there

is a significant relationship between them, and the null

hypothesis states the opposite, that there is no relationship.

[Note that we don’t test two hypotheses at once. If our alternative

hypothesis is that there is a positive correlation between two

variables, our null hypothesis is not that there is a negative

correlation: it’s that there is not a positive correlation (so, there

is either a negative or no significant correlation). The null

hypothesis is always the mutually exclusive converse of the

alternative hypothesis.]

In any hypothesis test, there are two possible results: we accept

the null hypothesis (ex. if there is no significant difference

 between our variables), or we reject the null and accept the

alternative (ex. if there is a correlation of statistical significance).

131130

The ideal statistical test always accepts a true null hypothesis and

rejects a false null hypothesis, but every test has some margin of

error (corresponding directly to your confidence interval/p-value).

As such, there are really four possible outcomes: we accept the

null correctly, we accept it incorrectly, we reject the null correctly,

or we reject it incorrectly.

A type I error is the incorrect rejection of the null hypothesis; a

type II error is the incorrect acceptance of it.

When a Type I Error is Acceptable

Completely eliminating type I and type II errors is a statistical

impossibility, but the design of a test can impact the amounts of

each. Depending on your situation, a type I error might be an

acceptable trade-off.

In medical screenings, for example, a simple and inexpensive

test is administered to a large number of people, none of whom

present any symptoms. These are designed to bring to the

doctors’ attention anyone who has any significant change that

would indicate they have the condition, which means the rates of

false negatives (type II errors) must be minimized. As a result, a

large number of type I errors are made. The false positives from

medical screenings are typically sorted out a�erward by more

complex and expensive tests.

Airport security in the United States is another example of a sit-

uation where type II errors are minimized by producing a large

number of type I errors. The overwhelming majority of times that

a detector goes off, it’s because of something inconsequential: a

watch, a shirt made of a peculiar fabric, a metal lunchbox, a belt

buckle. But since airport security minimizes false negatives, it

 creates a lot of false positives.

When a Type I Error is Unacceptable

In any situation where type II errors must be minimized, an

abundance of type I errors is typically the by-product. Conversely,

if type I errors are unacceptable, then type II errors typically take

their place.

In email spam detection systems, for example, type I errors

(pushing non-spam email to the spam folder) are much less

acceptable than type II errors (mistakenly leaving spam alone in

the inbox). The former causes significant annoyance to the user,

because they are missing potentially important emails; the latter

causes minor inconvenience, because they must manually delete

the spam. An optimized spam filter will filter out as many spam

emails as possible while ensuring no non-spam emails get marked

as spam.

In general, what types of errors are more acceptable to you

determines the setup of your test. To some extent, both errors can

be minimized at once, but it’s impossible to completely eliminate

either one, and minimizing one tends to increase the rates of the

other. Building in a system to handle the types of errors your test

throws (such as the additional tests administered to people who

test positive in medical screenings, routine pat-downs and bag

searches in airport security, or a “mark this as spam” button) will

improve your overall user experience.

133132

Type II Error

A type II error (type 2 error) is one of two types of statistical errors

that can result from a hypothesis test (the other being a type I

error). Technically speaking, a type II error occurs when a false

null hypothesis is accepted, also known as a false negative.

In any hypothesis testing situation, the null hypothesis states

that the subject of the test is not significantly different in the

experimental versus the control group, and so any difference

observed is the result of some error. The alternative hypothesis,

by contrast, states that there is a

significant difference.

As a result of this setup, there are four possible outcomes from

any hypothesis test:

1. We reject a false null hypothesis

2. We reject a true null hypothesis

3. We accept a true null hypothesis

4. We accept a false null hypothesis

1 and 3 are correct inferences; 2 is a type I error (a false positive),

and 4 is a type II error (a false negative).

When Type II Errors are Acceptable

Since it’s statistically impossible to entirely eliminate both type

I and type II errors, individuals performing experiments must

decide which type of error is more acceptable to them and

structure their experiments to eliminate the less acceptable one

as much as possible.

As an example of when a type II error might be more acceptable

than a type I error, let’s look at email spam checking. The

alternative hypothesis is that the email is spam, and thus the null

hypothesis is that the email is not spam. Committing a type I error

means marking a legitimate email as spam, preventing its normal

delivery. Committing a type II error means a spam email being

marked as legitimate and sent to the user’s inbox.

A significant number of type II errors points to an ineffective spam

filter, but a significant number of type I errors means the spam

filter is overall doing more harm than good by preventing users

from seeing legitimate communications. Therefore, the goal of

email spam filtering systems should be to bring down the

number of type II errors while keeping the number of type I errors

at near-zero.

By contrast, in a biometric security system, such as a fingerprint

scanner on a mobile phone or facial recognition so�ware on a

personal computer, then the alternative hypothesis is “the

scanner doesn’t identify the person on its list of authorized users”

and thus the null hypothesis is “the scanner does identify the

person on its list of authorized users”.

In this situation, a significant number of type II errors would

mean an insecure device, whereas a significant number of type

I errors would mean some minor user inconvenience of needing

to demonstrate their authorization another way (such as with a

password or pin code). Therefore, the syem should be designed to

bring down the number of type I errors while keeping the number

of type II errors at near-zero.

135134

How to Minimize Type II Errors

Because they arise from the design of the test, minimizing a

certain error type requires altering the test. To minimize the

number of type I errors, decreasing the p-value increasing the

confidence interval) is an easy way. To minimize the number of

type IIerrors instead, either increase the sample size (or run the

experiment for a longer time,in some cases), or increase the

p-value.

Usability Testing

A key part of the so�ware development process, usability testing

provides invaluable feedback on the user experience of a product.

Usability testing involves conducting real-world tests with a

segment of your customer base. The goal is to conduct real-time

test sessions asking the end user to complete tasks using your

product for evaluation of its ease of use, as well as to identify

problems that might negatively impact the user experience.

There are many advantages of usability testing beyond the

benefits of other testing methods. Internal pre-production, unit

tests or alpha testing can help you identify technical issues or

bugs, but conducting user testing with real users will provide you

with much more qualitative feedback. This can include:

• Comments on user experience from real users directly to the

 development team

• Resolution of internal debates about usability issues

• Identification of unforeseen usability problems ahead

 of launch

• Reduced risk of product failure through experimentation

There are many ways to conduct usability testing, but there are a

few common features of the testing process in all usability studies.

First, there are two groups: observers (typically one or more

usability experts), and participants. The observers can be

physically present, or sessions can be recorded for later analysis.

Participants can be chosen in a variety of ways:

137136

Hallway Testing

This type of testing relies on people chosen randomly from

passing foot traffic, e.g. in a hallway or outside on a sidewalk. This

testing method is more useful earlier in the design process, as it

can help development teams identify major issues or “brick walls”

that create major usability issues for the target audience.

Remote Usability Testing

Remote testing is most commonly chosen via a third-party service

or so�ware and conducted via interactive meeting tools such as

Zoom, with the observer and end user located in different

locations and/or time zones. Alternatively, the test sessions can be

conducted at different times, at the participant’s convenience, for

later review by the observer or development team.

Expert Review

This testing method makes use of an outside usability expert

or consultant to assess the user experience. These researchers

o�en evaluate user experience using the 10 usability heuristics

developed by Jakob Nielsen, including factors such as user

control and freedom, error prevention, efficiency of use and more.

A/B testing

Already a common type of testing for web design, product

features, e-commerce and more, A/B testing exposes the target

audience to two different versions of a website or feature and

records the user experience with each. Test results are compared

to determine which version, A or B, exhibited more or fewer

usability issues.

How you conduct usability testing will depend on the method you

choose for user research. In general, you should choose one part

of your product for testing, choosespecific tasks for the end user

to accomplish, and set standards for success.

