
page 1

Achieve True Continuous
Delivery with Feature Flags

hances are you’ve been told how to “work smarter,
f not harder”—but has anyone revealed the secret
to working faster? In software delivery, agility is an
ongoing objective. And for product and development
teams alike, figuring out how to best use the tools at your
disposal to quickly get new features to end users is a key
area of improvement.

While striving toward this, there’s no doubt you’ve come
across the various approaches for continuous
development and release:

But those aren’t the only benefits. In this whitepaper, we’ll
show you how to get the most value out of your software
delivery process — by implementing CD with feature flags.

Achieving CD is essential for continuous deployment, the
phase of actually getting those software changes to users
automatically. CD and continuous deployment both help to
decouple deployment and release from each other, so you

have control of where, when, and how quickly you push
code. This allows you to be as gradual or selective as you
need to roll out new changes without disrupting your users
or business.

There are three ways you can implement continuous
delivery:

Containerizing

Break a large development project into smaller pieces,
isolating and containing bits of code for teams to build
and release asynchronously from one another.

Automated Deployment Pipelines

Automate the delivery process and deploy features
in small but frequent increments, lowering the risk of
each release.

Feature Flags

Choose between di�erent code paths in your system at
runtime, toggling features on and o�, and then pushing
di�erent iterations into production and release.

Implement Continuous Delivery

Continuous integration (CI) is the process of
merging every code change from a developer to
trunk and running automated smoke tests
immediately. This acts as a quality check for new
code, identifying any problems and notifying the
developer. Though not a prerequisite for
continuous delivery, they often go hand in hand.

Continuous delivery (CD), meanwhile, refers to the
ability to safely release all types of software
changes — including new features and
configurations, bug fixes, and experiments — to
production and to end users at any time.

page 1

https://www.split.io/blog/continuous-deployment-feature-flags/

page 2

Achieve True Continuous Delivery with Feature Flags

1

2

3

4

5

Here’s how to pull it o�:

These methods aren’t mutually exclusive; you likely already
containerize or automate as part of your delivery process.
No matter where you’re at right now, feature flags will help
you take it up a notch. Why? Because feature flags deepen
the benefits that CD provides, helping you move even faster
and take greater control over your releases.

Run the Automation Engine

Continuous delivery relies on having automation in place to
test and deploy code as many times a day as you need. This
automation is what keeps the CD pipeline working.
Developers that need to manually run all the required tests
and deployments to keep code fit for release won’t be able
to deliver new code and features to users daily or more
often, which is what allows the critical “flow” state of
continuous delivery.

Feature flags help to support automation and speed up
processes for deployment, release, and further testing. By
applying an “if/else” control to code, feature flags
streamline the process of deploying multiple software
iterations without incident. As a result, teams can safely
practice trunk-based development and frequently integrate
code changes into the software, avoiding the issue of
long-lived feature branches.

If any bugs, issues, or unintended e�ects arise when you
release new updates, feature flags give you the fastest and
most effective solution. Just turn the feature off with a click
— no need for time-consuming rollbacks or
emergency hotfixes.

Improve Software Delivery Quickly
and Safely

Feature flags give developers a speed boost and a kill
switch, but they also give teams the flexibility to test, deploy,
and release at will by decoupling deploy from release. This
is one of the most notable ways that feature flags enhance
continuous delivery. For instance, your engineers can use
feature flags to deploy in-progress features into production
while keeping them hidden from users.

Great peace of mind and e�ciency come from this — your
team can tackle large development projects by breaking

them down piece by piece, turning risky, sweeping,
code-heavy changes into a series of smaller, more
manageable tweaks. Less room for error means better
results with lower stress. And once these features are
finished, your engineers can use feature flags to carry out a
controlled rollout.

By decoupling deploy from release and powering
controlled rollouts, feature flags contribute three critical
things to your software delivery process:

Speed: Get small changes to users faster,
test and retract them quickly, and produce
better iterations

Safety: Introduce subtle changes that don’t
disrupt the user experience, gain control over
the blast radius of each release, perform
more thorough pre-release troubleshooting,
and better understand the impact of each
change

Sureness: Test in production to avoid
surprises and stop guessing how a feature
will behave once live

Deploy the feature to production, turning on access
only for internal users. Your testing team can then
validate the feature in the same environment as
your users, with the same data and software.

Perform a controlled test among beta and early
access users to verify the feature’s performance,
usability, and functional parameters.

Conduct a canary release, deploying the feature for
just 5-10% of your user base. This allows the
product team to find any additional bugs, and
mitigate any errors associated with the feature.

Run an A/B test to better understand how your new
feature a�ects user behavior.

With this insight, release the feature more broadly
or press the kill switch and refine it further.

page 2

https://try.split.io/hubfs/pdfs/Observability_guide-SPLIT.pdf
https://try.split.io/hubfs/pdfs/Observability_guide-SPLIT.pdf

page 3

Achieve True Continuous Delivery with Feature Flags

FEATURE FLAGS: Operational Costs

Minimize environment costs by consolidating
test environments. Lower costs per release
by releasing early and often.

ALERTING: Business Risk

Reduce MTTR by instantly identifying and
killing bad features. Protect revenue by
avoiding unplanned outages and downtime.

EXPERIMENTS: Engineering E�ciency

Decrease maintenance cost of supporting

low-impact features. Boost engineering
productivity by focusing on high-impact
features.

Boost ROI with Split’s Feature Flags

When you implement feature flags with Split’s feature
delivery platform, you double the impacts of the investments
you’re already making in software delivery and add value to
the process.

Reduce environment costs

Multiple “lower” environments — such as integration, quality
assurance (QA), performance, and user acceptance testing
— are expensive to maintain, and they don’t always produce
the same results as testing in production. Split’s feature flags
create the operating conditions to test features safely in a
production environment, whether you’re targeting internal
QA engineers or end users. Not only does this make testing
more useful, it simplifies your QA and lowers the storage,
compute, and labor costs of running testing environments.

Lower costs per release

Split’s platform helps you produce 4–10 times more releases
per dollar spent on engineer labor. Fast and frequent
delivery also helps you avoid bugs, delays, and painful
merges later down the line.

Release more features, more frequently

Split’s customers have used feature flags to release four
times more features and reduce 95% of engineering time
per release.

Take the Next Step: Combine
Feature Flags and Data

Feature flags are certainly powerful on their own, but there is
a way to make them more e�ective: layering in behavior and
performance data. Ultimately, this contributes to an even
more mature version of continuous delivery.

With business and engineering metrics on your side, you
can grasp a feature’s e�ect in real time. Whether a feature
performs better or worse than you expect, impacts user
segments di�erently than you imagined, or varies depending
on the device or time of day, you’ll know instantly how each
change a�ects the customer experience — and the data will
help you decide what to do next.

Heightened visibility goes a long way. These metrics let you
make faster and better product decisions, clearing the path
for successful experiments as you test new features and
tweaks. And if a new feature ever causes performance
degradation, metrics will improve your detection and
recovery e�orts by alerting you to the problem.

This means engineers no longer have to spend time
investigating and isolating the root cause of performance
issues; just press the relevant kill switch and take care of it.
That’s MTTD and MTTR under control.

page 3

page 4

Learn how GoodRx uses Split to get advanced insight on feature changes and iterate
new ideas faster — or schedule a demo to discover what Split can do for you.

Webhooks

Use Split webhooks to add feature flag data
to your analytics, improve performance
monitoring, and update issue trackers.

APIs

Use Split’s API to integrate your favorite tools.
Push data into Split, extract data from it, build
custom integrations, or build on Split’s
platform.

Jenkins

 Use Split’s Jenkins plugin to create, update,
and delete code splits as part of test
automation and build workflow.

Together, feature flags and data produce the ideal version of
continuous delivery. While feature flags help you roll out
features with greater agility and control, data creates a
continuous feedback loop. When you run and measure small
experiments on a consistent basis, you’ll reach a state of
constant improvement — and your features will be as
attuned to your users as possible.

Go Forward with Split

Analytics and integrations

Split captures data from a variety of sources (Google
Analytics, Sentry, Segment, New Relic, etc.) so you can run
and analyze experiments, segmenting users for advanced
insights. Other integrations like automation servers (e.g.,
Jenkins) and SDKs (e.g., Android, Java) power continuous
delivery across frontend, backend, and mobile.

Achieve True Continuous Delivery with Feature Flags

This is what the future of continuous delivery looks like:
using feature flags to run controlled experiments, measure
the impact each change has on your users, refine your
features further, and release the best versions faster.

And Split’s feature delivery platform has everything you
need to get there:

Testing

Run A/B tests, multivariate testing, and beta testing to
identify the ideas that work — and develop a culture of
hypothesis-driven experimentation, where evidence
guides decisions.

Alerting

Split compares your feature flags and performance data and
— within 30 minutes — identifies if new features improve or
worsen the user experience. From new features to backend
configurations, Split measures and tells you everything.

Achieving continuous delivery with Split means speeding up
your development cycles, lowering the risk of releases, and
renewing your focus on the features that matter.

https://www.split.io/customers/goodrx/
https://www.split.io/contact-sales/

