
Choose Your Risks,
Or They’ll Choose You
Your software team’s playbook for mitigating unintended

consequences in financial services and how feature flags can help.

By Ariel Pérez

2 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

Choose Your Risks

02 Introduction

04 The Game of Risk Mitigation

05 Today’s Focus In Financial Services

06 Safe Moves With Risky Outcomes

06 The Branch That Ends in Conflict

08 The Big Bang That Blew Up

09 Slowing Down for Safety

 10 The Cautious Move to Not Move

 12 Observability Without Context

 13 3 Rules For Software Developers

 14 Bank Feature Management

 15 Split’s ROI

Developing software for the financial services industry is a unique world in which

to work. There are a different set of obstacles, regulations, and no real rules to

the road. This eBook discusses the challenges and opportunities for today’s

product development teams working at large financial institutions. It dissects

some common misconceptions from trying to do “the right thing” to meeting

regulatory and safety standards. It also provides guidelines for achieving your

goals while securing reliable risk controls in the process.

What We’ll Cover

Ariel is currently the VP of Engineering for Measurement & Learning at

Split. He is responsible for the technical direction and leadership of the

engineering team. They manage Split’s massive data pipelines and the

statistical engine charged with enabling customers to derive insights from

their features.

Ariel Pérez has had a diverse career in software engineering and product

development. He has worked at large global enterprises like JP Morgan

Chase, small startups like Try The World, and even ran his own product

and engineering consulting practice. As he’s gained experience across

different domains and faced numerous technical challenges, one core

belief has continually been reinforced in his mind: that putting people first

is what has the biggest impact of all in any organization. He has always

strived to be a leader, rather than a manager in all his roles, whether they

were purely in Engineering Management, in Entrepreneurship, in Product

Management, or a combination of them.

When he’s not leading teams and building highly scalable distributed

solutions, you can find Ariel in a dance studio teaching a latin dance class,

training a dance team, or on a dance floor - dancing to live music.

3 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

About the author:

Ariel Perez

4 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

For software developers working in financial services, mitigating risk goes with

the territory. It’s like a never-ending game of Whac-A-Mole, where you navigate

the dangers as they appear. The regulators in the industry are quick to point to

watch-outs, but the truth is, no one ever tells you how to avoid them. Developers

are alone, exposed to potential errors. The good news is: Responsibility and

autonomy can also be rewarding if you play your cards right. Embracing a

reimagined software delivery strategy that’s powered by feature management

can help; it might even earn you a few extra arcade tokens.

Risk mitigation is arguably the number one priority in financial services firms’

software, and the controls make product development teams feel anything

but agile. With constant policy changes, layered regulatory environments,

and emergent security threats, there’s too much at stake not to have an

overabundance of caution. However, product development teams may lose sight

of some very important opportunities if safety is the only focus. There’s always

room to further accelerate feature delivery and empower a stronger culture of

experimentation. Even at the world’s largest financial institutions, this can be

done in a manner that doesn’t undermine risk controls, but further strengthens

them.

I was able to embrace Agile at a Fortune 50 bank without losing rigor in our

approach to risk management, and you can, too. I want to share my approach

with other companies and product development teams in the industry. The

following plays are designed to help you achieve your goals in financial services

software without collateral damage along the way.

Financial Services
Development:
It’s a Never Ending Game of Risk Mitigation

5 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

Key Priorities For Financial
Services Software
According to a survey conducted by EY Research,

here’s what respondents in financial services indicated

as a top priority for their software development team:

89%

85%

82%

77%

Implementing a Digital

Transformation Program

Say Enhancing Cyber &

Data Security Is a Priority

Gaining Efficiencies

Through Technology Adoption

Think They Need To

Improve Risk Management

https://www.eteam.io/blog/software-development-in-financial-sector

6 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

If we speed up, we might miss something. But if we slow down, we might fall behind. If we release a

feature now, it could break. If we keep it in testing, it might never see the light of day. We constantly

weigh these risks and more as engineers in the financial services industry. Many work to squash out

all possible sources of error. However, those who think perfection is attainable might be opening the

door to a whole new world of unintended consequences.

Here’s the reality: With so many risks in financial services software, there’s no way to eliminate them

all completely. The only way we can advance our practice is to take a more holistic view of risks, so we

can better identify which ones are most worth taking. Let’s discuss some common risk controls ap-

plied to software development in financial services, and how they might be more dangerous than you

think. Then, let’s look at some alternate plays, so you can start taking risks without really taking risks.

1. The Branch That Ends In Conflict

Sheer Size

Large institutions dominate financial services with massive scales. Hundreds

(sometimes thousands) of software engineers could be working on the same

application simultaneously. That’s a lot of people that might potentially disrupt the

development process. As a result, projects get broken out into silos with numerous

testing environments and multiple layers of approval. Meanwhile, you’re just trying

not to step on toes or break the build.

A Long-Lived Feature Branch and Release Branch

To mitigate risk, you’re probably deploying to a long-lived feature branch, a release

branch, or both. Although this strategy encourages further validation and testing

in a safely staged environment, it’s actually introducing a whole new set of risks.

It’s as if these branches become isolated, like islands. Feedback on how a new

Safe Moves With Risky
Outcomes

Your Move:

The

Challenge:

And How to Improve Your Play

7 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

branch will respond to being integrated isn’t truly known until after it’s merged with

the main line. By the time that actually happens, a merge conflict is almost inevitable.

Still, more importantly, unintended interactions between features from different

branches will finally rear their ugly heads, exposing your applications to anything

from performance issues, to inconsistent behaviors, or even crashes.

Think Bigger Than a Branch, Deploy to the Trunk

Trunk-based development is an industry best practice, and the fastest

moving companies have been embracing it for years. The goal is to achieve

continuous integration, pushing your software changes to the main line as often as

possible. The more often, the better. So, when you merge, you can make it much

more likely that the main line will be ready to deploy at a moment’s notice.

But let’s get real for a minute. You know that continuous integration can’t be achieved

overnight, especially at a large financial institution with thousands of code changes

and branches already in motion. You’re absolutely right. However, you can slowly

transition now by merging unfinished work right to the trunk. This is where feature

flags shine.

Feature flags let you deploy work-in-progress code right to the trunk, wrapping it up

in a safety blanket that notifies your team right away. “Hey, this isn’t done yet,” says

the feature flag, “But when the time comes, I’m living proof that you can merge me

without breaking things.” Instead of writing your code on a separate branch with

plans to merge later, you’re creating what’s called a branch by abstraction within your

existing source code. It’s there behind a flag. It’s passing the validation process. It just

hasn’t been finished yet or turned on for your customers.

To unite silos, processes, and remove potential merge conflicts at large financial

institutions, give the biggest olive branch possible: the trunk.

Alternate

Play:

8 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

2. The Big Bang Release That Blew Up

Release Risk

To keep our banking customers engaged and constantly innovating personalized

and secure banking experiences, you’ve got to release and deploy new features. It’s

part of the job we signed up for. But as you already know, there are many risks and

costs involved with the process. You want to pressure test your changes, ensure

everything runs smoothly, and reduce the impact of downtime that might disrupt

your customers.

A Batched Release Strategy

This strategy is a common way to mitigate release risk in the finance industry. It

makes a lot of sense. You want to decrease the impact of downtime, so you deploy

on nights and weekends. You want to test and validate as much as possible through

a contained release branch. You want to reduce the effort and cost involved with

deployment, so you pay it all at once, and coordinate a big-bang release. This is the

name of the game in finance. However, you’re introducing a slew of new risks by

batching your releases together.

With an everything-at-once strategy, more things can go wrong, which leads to

more problems to sift through, and there’s a higher chance you’ll have to roll it all

back. The minimal downtime you planned could be extended for a while, and it’s no

vacation.

Risk a Little, Not It All: Try Small, Frequent Releases and Deployment

As we previously mentioned, feature flags can help you move past long-lived feature

branches so that you can strive for a trunk-based approach. In doing so, you gain

the ability to empower fast and frequent release/deploy strategies. The value of this

is getting your features out there often. What you get back is real-time insight into

how features perform in the real world. Because your focus is more granular, you’ll

instantly see which features are causing problems. Turn off the bad ones; there’s no

need for a stressful rollback of an entire release branch.

A beautiful thing about feature flags is that they separate release from deployment.

This means you put a feature out there and keep it turned off. Then, you can see how

it behaves without actually showing it to your customers.

You r Move:

Alternate

Play:

The

Challenge:

9 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

This is how you move away from the big bangs that can blow up your batched

release strategy. Small and frequent releases/deployments are a smaller risk to take

that can help gain efficiencies. “Aim small, miss small”: That’s the name of the game.

3. Slowing Down for Safety Reasons

Code Breaks

Overregulation in financial services tends to prioritize risk mitigation over release

velocity. That’s no surprise. But it’s not like you can stop releasing new software

innovations to your customers. Your product management team would despise you,

and your customers would leave you for a new cloud-based banking provider. We

have to push on while trying to balance all of the risks. Thinking about all the errors

that might happen in production will only paralyze you. We have to face the facts.

Mistakes happen; it’s a matter of minimizing the consequences as much as humanly

possible.

Slowing Down Your Releases

If you’re shipping less often, it’s because you’re making sure you’ve got it right.

You’re testing new features to double-check they won’t be flukey. You’re updating

to meet customer requests. You want your new feature release to be perfect, and

that’s a natural way to think. But, as you’re striving for perfection, remember this:

Perfect doesn’t exist in software development. In fact, perfection is the enemy of

progress.

By chasing perfection, you slow things down. Here’s what typically happens. If a

break occurs (and they often do), there’s no way to get your time back. Since you

spent so much of it preparing for your release, you’ll have little time left to roll back,

fix, and re-release. A strategy like this only guarantees one thing: It’ll take you longer

to fix the problem.

Your Move:

The

Challenge:

10 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

Don’t Slow Down for Safety, Speed Up the Fix

Many development teams are saying this, and it truly works in practice. Safety is

really just a result of speed. Increased velocity can actually eliminate risks.

How do you make it happen? It requires investing in the things that allow you to go

fast with confidence: TDD, CI/CD, automated testing, observability/monitoring, with

feature flags and insightful data woven throughout. This helps the team exercise a

critical muscle. Introducing features regularly and tracking the impact, allows you to

respond the moment something breaks. A little blip is a quick fix, and that’s as simple

as toggling off a feature.

Shift to strategies you can actually control. If we know breaks are inevitable, be a

better fixer, not a product of the underprepared.

4. The Cautious Move Not to Move

Legacy Technology

Cloud adoption and microservices are the new norm, but migrating to them doesn’t

come without the risk of a critical data leak and a plethora of other potentially

catastrophic failures. It’s why so many financial institutions are hanging on to legacy

technology. This spans old mainframes, exhausted database providers, even

ancient versions of Java, .NET, and Python. You’re probably pressured to keep

up with agile transformation in your engineering department, which leaves you

weighing some difficult decisions. Do you risk migrating to microservices? Or, do

you risk keeping legacy running on its last leg? Talk about a lose-lose situation.

“If It Ain’t Broke, Don’t Fix It”

If you’re a software engineer in the financial industry, you’re constantly triaging

risks as they appear. It makes sense that you’d choose to avoid a time-consuming

and costly migration if you don’t have to. But here’s the reality: The longer you run

your legacy solutions, the higher the likelihood these things will lose their resiliency.

Eventually, they get harder to update, more expensive to test, and trickier to modify

without breaking things. As a result, they become more vulnerable to security risks.

You might think it’s a safe move to keep legacy, but you’re introducing a whole other

list of risks that worsen over time.

Your Move:

The

Challenge:

Alternate

Play:

11 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

Move to the Cloud and Microservices, Avoid Lifting Everything at Once

Even though it’s an investment and the process takes time, migrating away from legacy

to microservices is worth it. It’s a long-term commitment to agile transformation and

security. The longer you wait to migrate, the more your legacy technology becomes

outdated and potentially irreparable. Might as well get going now to avoid these risks.

So what if you’re a major bank? It’s not like you can snap your fingers, and your entire

global infrastructure suddenly teleports to the cloud. Seriously, there is a feasible

strategy, and it’s about starting small. This is where feature flags are a life saver.

Feature flags help you carve out small pieces of code little by little. Then, simply

migrate to the cloud in itty-bitty chunks. Doing this allows you to control the traffic from

the old system to the new one in percentages. If something is failing, you can shut it off

with very little traffic disturbance.

Want to go even further by tracking the progress of your migration? Use a feature

management platform that attributes data to every flag. With intuitive insights, you can

run parity tests between the old and new systems. You can measure to see which one

runs faster or slower or which throughput is higher or lower. Basically, you can get as

granular with performance metrics as you want.

When you rely on feature flags with measurement and learning, it’s less of a lift when

you move. Try it for yourself. Use this sample code for Tap Compare with feature flags

while migrating from S3 to Mongo:

Alternate

Play:

12 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

5. Observability Without Context

The Cost of Troubleshooting

A lot is riding on the way we troubleshoot at major financial institutions. Due to the

large number of environments and the sensitivity of data involved, when bugs are

introduced, it becomes very difficult to locate and extract them. If you don’t move fast

enough, it gets serious quick. Outages create downtime, costing on average $5,600

per minute, but that number is even higher at large financial institutions. This puts

enormous pressure on DevOps teams, and time to resolution has never been more

critical.

Debugging With Feature Observability

With the superabundance of debugging tools available at your disposal, you’re

making observability possible more and more each day. From modern logging to

APM, to observability stacks and more—whatever it takes to help you quickly identify

the cause and location of a problem, you’ll do it. Whatever methods you can adopt to

reduce your time to resolution, it’s your number one priority. This is the right strategy.

You’re not introducing new risks by doing this, however, there’s a way to take things

one step further.

Limit Risk Further With Feature Aware

Imagine if you didn’t just have observability. Imagine if you had granular awareness

within your observability tools. With Feature Aware, you can know exactly how a

particular feature impacted a certain metric. That’s something only the best feature

flagging tools like Split can do. While your observability stack can help you find

correlations, only Split can help you determine causation.

With Feature Aware, you can enable more verbose logging for specific users. You

can alert on particular metrics like latency and error states that have degraded

your system. A Feature-Aware engine tells you, for a fact, that the feature you rolled

out is the root of the problem. Furthermore, when integrating feature management

platforms with tools like Bugsnag or Datadog, you can see feature context come

together with monitoring metrics to be able to quickly identify the cause and location

of the issue at hand.

Context and awareness are gamechangers. They’ll make troubleshooting and

triaging problem-causing features more efficient, regardless of the number of

environments involved.

You r Move:

Additional

Play:

The

Challenge:

https://blogs.gartner.com/adnrew-lerner/2014/07016/the-cost-of-downtime/
https://blogs.gartner.com/adnrew-lerner/2014/07016/the-cost-of-downtime/

1 1

2 2

3 3

13 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

3 Rules Every Software
Developer Should Live By

Ship Faster

Know the Impact of Everything You Release

Unite Teams Across Silos

The right feature management and experimentation platform can help you

change the culture across product development teams. Eliminate uncertainty

with modern trunk-based development through a single source of truth that

everyone can work across. Feature flags unlock the velocity teams crave.

Engineers become emboldened to test new features as an outcome. If

something breaks, they can put everything back together with the push of a

button.

Feature management removes the job’s ancillary, administrative, and tedious

aspects, so engineers can focus on the products they’re building. As a result,

they start feeling more purposeful, more productive, and less stressed. They

receive regular feedback from the features they release, helping them appreciate

the ways their work is benefitting the business. After all, engineers want to know

that they’re making a difference.

Thanks for reading. I hope this playbook helps you choose your risks wisely,

so you can advance software delivery practices at your financial institution

and beyond. If you’re looking to get started with feature management and

experimentation, Split is designed to scale with enterprise banks and financial

institutions. Its unique architecture is one-of-a-kind for data security and PII

protection. Plus, it has a patented attribution engine that automatically connects

customer event data to feature flags for performance and behavioral context at

the feature-level. This 100% feature observability is a game-changer for those

who develop and deliver. Eliminate the guesswork with a deeper attention to

data. Request a live demo with a Split sales representative to learn more.

14 CHOOSE YOUR RISKS. OR THEY’LL CHOOSE YOU.

Bank on Feature
Management for a Culture
of Change

http://demo-request

Split is revolutionizing software delivery with its Feature Data

Platform ™, pairing the speed and reliability of feature flags

with data to measure the impact of every feature.

Schedule a demo with us or visit split.io to learn more.

Split as a Return on Investment
From decreasing downtime to helping teams deploy more frequently

(and with less risk), the right feature management & experimentation

platform pays in more ways than one.

Gain 10.7% Engineering Efficiency

An Average of $16M Efficiency Savings Per Year

Increase Deployment Frequency Up to 50x

About 1 min MTTR Average

Decrease the Cost Per Feature Change By 54%

100% Engineers Agree That Feature Flags Are Important

to CI/CD

https://www.split.io/demo-request/
https://split.io

